簡易檢索 / 詳目顯示

研究生: 顏怡文
Yen, Yee-wen
論文名稱: 銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究
Phase Equilibria of the ternary Ag-Sn-Cu and Ag-Sn-Au systems, and interfacial reactions in Ag-Sn/Cu and Ag-Sn/Au couples
指導教授: 陳信文
Chen, Sinn-wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 91
語文別: 中文
論文頁數: 184
中文關鍵詞: 相平衡熱力學模型界面反應穩定性圖反應路徑無鉛銲料等溫橫截面圖反應偶
外文關鍵詞: CALPHAD, Phase Equilibria, thermodynamic model, interfacial reaction, stability diagram, reaction path, lead-free solder, isothermal section
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以相平衡實驗的量測,與CALPHAD方法的計算,測定了銀-錫-銅與銀-錫-金三元系統的等溫橫截面圖。利用所建立的三元系統熱力學模型,計算各組成元素的穩定性圖。以反應偶的實驗方法,研究銀-錫/銅與銀-錫/金之界面反應。由反應偶的實驗結果,配合等溫橫截面圖與穩定性圖,分析界面生成相與相成長之動力學。銀-錫合金是最具潛力的無鉛銲料之一,銅與金則是目前電子工業中最常使用的的基材材料。本研究所得之銀-錫-銅與銀-錫-金三元系統的相平衡知識、與銀-錫/銅與銀-錫/金之界面反應資料,對銀-錫合金作為無鉛銲料之應用與發展將具有重要的參考價值。
    銀-錫-銅系統的240與450℃相平衡實驗結果顯示,銀-錫-銅系統並沒有三元化合物的生成。在上述二個溫度所存在的平衡相,皆為銀-銅、銀-錫與錫-銅二元系統的平衡相。雖然h1-(Cu6Sn5)與d1-(Cu4Sn)相,分別僅存在240與450℃。但銀-錫-銅系統於此二個溫度下,皆分別有五個三相區、十一個雙相區與七個穩定相。e1-(Cu3Sn)與多數的相,均有縛線的連接,顯示e1相是頗為穩定的相。利用文獻已建立的銀-銅、銀-錫與錫-銅二元系統之熱力學模型,參考此研究的三元相平衡實驗結果,建立了銀-錫-銅之三元系統熱力學模型,並據以計算銀-錫-銅在240與450℃下的等溫橫截面圖、與銅、錫元素的穩定性圖。

    銀-錫/銅的界面反應實驗,包括了液相/固相反應的240與450℃的Sn-3.5 wt. %Ag/Cu與450℃的Sn-25 wt. %Ag/Cu反應偶實驗,以及450℃下的Sn-74 wt. %Ag/Cu與Sn-84 wt. %Ag/Cu固相/固相反應偶實驗。在240與450℃的液相/固相反應偶中,其反應路徑分別為L/h1/e1/Cu與L/e1/d1/Cu。與液相相接的界面皆呈波浪的不規則形態,其與固態基材相接的介金屬相界面則頗為平整,所生成的介金屬相則成層狀的結構。Sn-74 wt. %Ag與Sn-84 wt. %Ag分別在e2-(Ag3Sn)與z1-(Ag4Sn)二相的組成範圍內,450℃的e2/Cu與z1/Cu的界面形態則成較複雜的指狀交錯,而且有明顯的孔洞與裂縫。介金屬相的成長,主要是由錫原子的擴散所控制。其厚度皆隨反應溫度升高與反應時間延長而增加。

    銀-錫/金的反應偶實驗,皆為固相/固相的反應。合金為Sn-3.5 wt. %Ag與Sn-25 wt. %Ag二種,反應溫度分別為200、180、150與120℃。雖然合金與反應溫不同,但是這些反應偶的界面生成相皆為d2-(AuSn)、e3-(AuSn2)與h2-(AuSn4)。依據文獻中已建立的銀-金、銀-錫與金-錫二元系統之熱力學模型,參考文獻中相平衡資料,如無三元化合物、Ag與Au、z1與z2生成連續固體溶液等,建立了銀-錫-金之三元系統熱力學模型。並據以計算銀-錫-金在200與150℃下的等溫橫截面圖,與金、錫元素在200℃下的穩定性圖。


    Sn-Ag alloys are the most promising lead-free solders. Cu and Au are popular substrate materials. Experimental and CALPHAD methods have been carried out to investigate the phase equilibria of the Ag-Sn-Cu ternary system. Various Ag-Sn-Cu alloys were prepared to determine the isothermal sections of the Ag-Sn-Cu ternary system at 240 and 450℃. The results indicate that the e1 phase is a very stable phase in the Ag-Sn-Cu ternary system. Based on literature data, phase diagrams of three binary systems, Ag-Cu, Ag-Sn, Cu-Sn, Au-Sn, and Ag-Au, have been calculated by using CALPHAD methods. According to these binary thermodynamic models, the ternary thermodynamic models of the Ag-Sn-Cu and Ag-Au-Sn systems have been established. Owing to these ternary thermodynamic model, isothermal sections of the Ag-Sn-Cu system and stability diagrams about Cu and Sn elements at 240 and 450℃, and the Ag-Au-Sn system at 200 and 150 ℃ can been calculated. The stability diagrams of Au and Sn elements at 200 ℃ also can be calculated. The calculated results are reasonable and accepted when compared to experimental results. The e1 phase has the lowest value of Gibbs formation energy; this can explain why e1 phase is a very stable phase in the Ag-Sn-Cu ternary system. Several Ag-Sn alloys reacting with Cu or Au substrates have been examined by using reaction couples. The thickness of the reaction layers increased with higher temperature and longer reaction time. Their growth rates in all the couples followed the parabolic law. Based on the interfacial morphology in the reaction couples, the phase formation relationship and the concept of Kirkendall effect, it is concluded the Sn is the fastest diffusion species in these couples.

    摘要………………………………………………………………………I 目錄……………………………………………………………………IV 表目錄…………………………………………………………………III 圖目錄…………………………………………………………………VII 一、前言…………………………………………………………………1 二、文獻回顧……………………………………………………………9 2-1:相平衡…………………………………………………………9 2-1-1:相平衡圖……………………………………………………9 2-1-2:熱力學與相圖………………………………………………12 2-1-3:穩定性圖……………………………………………………15 2-1-4:銀-錫-銅的相平衡…………………………………………17 2-1-5:銀-錫-金的相平衡…………………………………………22 2-2:界面反應……………………………………………………………25 2-2-1:熱力學之驅動力與區域平衡…………………………………26 2-2-2:動力學之因素,成核與成長…………………………………27 2-2-3:反應路徑與界面形態…………………………………………29 2-2-4:銀-錫/銅的界面反應…………………………………………36 2-2-5:銀-錫/金的界面反應…………………………………………38 三、研究方法………………………………………………………………39 3-1:相平衡的實驗方法…………………………………………………39 3-1-1:合金配置………………………………………………………39 3-1-1:合金分析………………………………………………………40 3-2:界面反應的實驗方法………………………………………………41 3-2-1: 合金配製與反應偶製作………………………………………41 3-2-2:樣品金相處理與分析……………………………………………43 3-3:熱力學模型建立與相圖計算…………………………………………44 3-3-1:二元平衡相圖(T-X圖)…………………………………………44 3-3-2:三元平衡相圖(等溫截面相圖)…………………………………46 3-3-3:穩定性圖…………………………………………………………48 四、結果與討論……………………………………………………………49 4-1:相平衡實驗……………………………………………………………49 4-1-1:銀-錫-銅三元系統在240℃下的相平衡………………………49 4-1-2:銀-錫-銅三元系統在450℃下的相平衡………………………62 4-2:銀-錫-銅三元系統的相圖計算與穩定性圖…………………………75 4-2-1:銀-錫、銀-錫、與銅-錫二元系統的計算……………………75 4-2-2:銀-錫-銅三元系統的計算……………………………………83 4-2-3:銀-錫-銅三元系統的穩定性圖………………………………88 4-3:銀-錫/銅界面反應……………………………………………………97 4-3-1:銀-錫/銅反應偶的固相/液相界面反應………………………97 4-3-2:銀-錫/銅反應偶的固相/固相界面反應………………………101 4-3-3:銀-錫/銅反應偶的動力學與反應路徑………………………106 4-3-4:銀-錫/銅反應偶的反應路徑與穩定性圖的關係……………112 4-4:銀-錫/金反應偶的界面反應………………………………………117 4-4-1:錫-3.5wt%銀/金反應偶的固相/固相界面反應……………117 4-4-2:錫-25wt%銀/金反應偶的固相/固相界面反應………………121 4-4-3:銀-錫/金反應偶的動力學……………………………………124 4-5:銀-錫-金三元系統的相圖計算與穩定性圖………………………129 4-5-1:金-錫、銀-金、與銀-錫二元系統的計算…………………129 4-5-2:銀-錫-金三元系統的計算……………………………………139 4-5-3:銀-錫-金三元系統的穩定性圖與銀-錫/金反應偶的反應路徑與 穩定性圖的關係……………………………………………146 五、結論…………………………………………………………………151 5-1: 銀-錫-銅三元系統的相平衡…………………………………151 5-2:銀-錫/銅的界面反應……………………………………………152 5-3:銀-錫/金的界面反應……………………………………………153 5-4: 銀-錫-銅三元系統的相平衡……………………………………153 5-5: 穩定性圖與反應路徑……………………………………………154 六、參考文獻………………………………………………………………155 附錄…………………………………………………………………………163

    1. S.M. Sze, Semiconductor Devices Physics and Technology, John
    Wiley & Sons, New York (1985).
    2. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York (1994).
    3. B. C. Johnson, Electronic Materials Handbook, Vol. 1 Packaging, ASM International, Materials Park, Ohio (1989).
    4. L. Hymes, Electronic Materials Handbook, Vol. 1 Packaging, ASM International, Materials Park, Ohio (1989).
    5. R. J. K. Wassink, Soldering in Electronics, 2nd Edition,
    Electrochemical Publication Limited, British Isles, England (1989).
    6. C. Ernhart and S. Scarr, presented at the ACYF research conference, New Directions in Child and Family Research (1991).
    7. B. Cardin and H. Waxman, “Lead-based paint hazard abatement Act”(H2922) (1991).
    8. P. Zarrow, Circuits Assembly, August, pp. 18-20 (1999).
    9. 溫麗箱、陳俊仁、林光隆,電子資訊,第2卷第5期,pp. 16-19
    (1986).
    10. J. W. Morris, Jr., J. L. F. Goldstein, and Z. Mei, JOM, Vol. 45, pp. 25-27 (1993).
    11. J. Glazer, International materials reviews, Vol. 40, pp. 63-95 (1995).
    12. S. K. Kang and A. K. Sarkhel, Journal of Electronic Materials, Vol. 23, pp. 701-707 (1994).
    13. S. Jin, JOM, Vol. 45, pp. 13-19 (1993)
    14. C. Melton, JOM, Vol. 45, pp. 33-35 (1993).
    15. M. McCormack and S. Jin, JOM, Vol. 45, pp. 36-40 (1993).
    16. S. W. Chen, Materials Chemistry and Physics, Vol. 33, pp. 271-276 (1993).
    17. 1999 Sony Electronics, Inc. Reproduction in
    “http://www.sel.sony.com/SEL/consumer/sacd/pdf/M9ED.pdf(1999).
    18. A. Rahn, The Basics of Soldering, John Wiely & Sons, New
    York (1993).
    19. E. P. Wood and K. L. Nimmo, Journal of Electronic Materials, Vol. 23, pp. 709-713 (1994).
    20. M. McCormack and S. Jing, Journal of Electronic Materials, Vol. 23, pp. 715-720 (1994).
    21. Y. C. Lee and W. T. Chen, Manufacturing Challenges in Electronic Packaging, Chapman & Hall, New York (1999).
    22. D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, Chapman & Hall, New York (1992).
    23. F. J. J. van Loo, J. A. van Beek, G. F. Bastin, and R. Metselaar, in“Diffusion in Solids: Recent Developments”, ed. By M. A. Dayananda and G. E. Murch, The Metallurgical Society, Inc., Warrendale, Pennsylvania (1985).
    24. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, pp. 278-287 (1990).
    25. I. Karakaya and W. T. Thompson, Bulletin of Alloy Phase Diagrams, Vol. 8, pp. 340-347 (1987).
    26. W.C. Giessen, Bulletin of Alloy Phase Diagrams, Vol. 1, pp. 41-45 (1980).
    27. E. Gebhardt, and G. Petzow, Zeitschrift fur Metallkunde, Bd. 50, pp. 597-605 (1959).
    28. O. Kubascewski, in ”Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams” ed. by G. Petzow and G. Effenberg , VCH Publishers, New York (1988).
    29. C.M. Miller, I.E. Anderson, and J. K. Smith, Journal of
    Electronic Materials, Vol.23, pp. 595-601 (1994).
    30. B. J. Lee, N. M. Hawng, and H. M. Lee, Acta Metallurgica et
    Materialia, Vol. 45, pp. 1876-1874 (1994).
    31. H. M. Lee, S. W. Yoon, and B. J. Lee, Journal of Electronic
    Materials, Vol. 27, pp. 1161-1166 (1998).
    32. H. Okamoto and T. B. Massalski, in “ASM Handbook Vol.3
    Alloy Phase Diagrams”, ed. by H. Baker, ASM International,
    Materials Park, Ohio (1992).
    33. H. Okamoto and T. B. Massalski, Bulletin of Alloy Phase Diagrams, Vol. 5, pp. 492-503 (1984).
    34. B. Legendre, C. Hancheng, F. Hayes, C. A. Maxwell, D. S. Evans and A. Prince, Materials Science and Technology, Vol. 3, pp. 875- 876 (1987).
    35. P. Y. Chevalier, Thermochimica Acta, Vol. 130, pp. 1-13 (1988).
    36. T. B. Massalski and H. Pops, Acta Metallurgica Vol. 18, pp. 961-968 (1971).
    37. D. S. Evans and A. Prince, in “Phase diagrams of ternary gold alloys”ed. by A. Prince, G. V. Raynor and D. S. Evans, Institute of Metal, London (1990).
    38. D. S. Evans and A. Prince, Metal Science, Vol. 8, pp. 286-290 (1974).
    39. T. B. Massalski and H. Pops, Acta Metallurgica, Vol. 18, pp. 961-968 (1970).
    40. M. L. Malhotra and K. R. Lawless, Journal of Biomedical Materials Research, Vol. 9, pp. 1 97-205 (1975).
    41. R. J. Tarento and G. Blaise, Acta Metallurgica, Vol. 37, pp. 2305-2312 (1989).
    42. P. Nash, M. F. Singleton, and J. L. Murray, in “ASM Handbook Vol.3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio (1992).
    43. K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan, New York (1992).
    44. C. Wagner, Zeitschrift fur Anorganische und Allgemeine Chemie., Vol. 236, pp. 320-328 (1938).
    45. R. A. Rapp, A. Ezis, and G. J. Yurek, Metallurgical Transactions, Vol. 4, pp. 1283-1292 (1973).
    46. F. J. J. van Loo, Progress in Solid State Chemistry, Vol. 20, pp. 47-99 (1990).
    47. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, Vol. 2, pp. 89-117 (1963).
    48.C. R. Kao and Y. A. Chang, Acta Metallurgica et Materialia, Vol. 41, pp. 3463-3472 (1993).
    49. C.R. Kao, Ph.D. Thesis, University of Wisconsin-Madison (1994).
    50. F. J. J. van Loo and A. A. Kodentsov, Pure and Applied Chemistry, Vol. 70, pp. 501-508 (1998).
    51. D. Grivas, D. Frear, L. Quan, and J.W. Morris, Jr., Journal of Electronic Materials, Vol. 15, pp. 355-359 (1986).
    52. J.O.G. Parent, D.D.L. Chung, and I.M. Bernstein, Journal of Materials Science, Vol. 23, pp. 2564-2572 (1988).
    53. A.J. Sunwoo, J.W. Morris, Jr. and G.K. Licey, Jr., Metallurgical Transactions A, Vol. 23A, pp. 1323-1332 (1992).
    54. Y.Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs, and R.F. Pinizzotto, Journal of Electronic Materials, Vol. 22, pp. 769-777 (1993).
    55. P. T. Vianco, P. F. Hlava, and A. C.Kilgo, Journal of Electronic Materials, Vol. 23, pp. 583-594 (1994).
    56. P. T. Vianco, K. L. Erickson, and P. L. Hopkins, Journal of Electronic Materials, Vol. 23, pp. 721-727 (1994).
    57. F. Bartels, J. W. Morris, Jr., G. Dalke, and W. Gust, Journal of Electronic Materials, Vol. 23, pp. 787-790 (1994).
    58. P. T. Vianco, A. C.Kilgo, and R. Grant, Journal of Electronic Materials, Vol. 24, pp. 1493-1505 (1995).
    59. I. Manna, S. Bader, W. Gust, and B. Predel, Physica Status Solidi (a) Vol. 119, pp. K9-K13 (1990).
    60. H.T. Luo and S. W. Chen, Journal of Materials Science Vol. 31, pp. 5059-5067 (1996).
    61. C. R. Kao, Materials Science and Engineering A238, pp. 196-
    1 201 (1997).
    62. A. Hayashi, C. R. Kao, and Y. A. Chang, Scripta Materialia, Vol. 37, pp. 393-398 (1997).
    63. M. S. Lee, C. M. Liu, and C. R. Kao, Journal of Electronic
    Materials, Vol. 28, pp. 57-62 (1999).
    64. Y. H. Tseng, M. S. Yeh and T. H. Chuang, Journal of Electronic Materials, Vol. 28, pp. 105-108 (1999).
    65. H. C. Bhedwar, K. K. Ray, S. D. Kulkarni, and V. Balasubramanian, Scripta Metallurgica, Vol. 6, pp. 919-922 (1972).
    66. K. N. Tu, Acta Metallurgica, Vol. 21, pp. 347-354 (1973).
    67. H. Oikawa and A. Hosoi, Scripta Metallurgica, Vol. 9, pp. 823-828 (1975).
    68. M. Onishi and H. Fujibuchi, Transactions of the Japan Institute of Metals, Vol. 16, pp. 539-547 (1975).
    69. L. Revay, Surface Technology, Vol. 5, pp. 57-63 (1977).
    70. R. Halimi, Thin Solid Films, Vol. 148, pp. 109-119 (1987).
    71. K.N. Tu and R.D. Thompson, Acta Metallurgica, Vol. 30, pp. 947-952 (1982).
    72. Z. Mei, A.J. Sunwoo, and J.W. Morris, Jr., Metallurgical Transactions A, Vol. 23A, pp. 857-864 (1992).
    73. K.N. Tu, Materials Chemistry and Physics, Vol. 46, pp. 217-
    223 (1996).
    74. Y. W. Yen and S. W. Chen, unpublished work.
    75. Diffusion data, Vol. 2, Diffusion Information Center, Cleveland, Ohio, pp. 123-124(1968).
    76. L.H. Su, Y.W. Yen, C.C. Lin, and S.W. Chen, Metallurgical and Materials Transactions B, Vol. 28B, pp. 927-934 (1997).
    77. S. K. Sen, A. Ghorai, and A.K. Bandyopadhyay, Thin Solid
    Film, Vol. 155, pp. 243-253 (1987).
    78. J. D. Pan and R. W. Balluffi, Acta Metalurgica, Vol. 30, pp. 861-870 1982).
    79.W. Gust, J. Beuers, B. Predel, J. Steffen and S. Stillz, Acta Metalurgica, Vol. 34, pp. 1671-1680 (1982).
    80. Z. M. Guan, G. X. Liu and J. Du, Acta Metalurgica et Materialia, Vol. 41, pp. 1293-1300 (1993).
    81. J. London and D. W. Ashall, Brazing & Soldering, No. 11, pp. 49-55 (1986).
    82. D.R. Flanders, E.G. Jacobs, and R. F. Pinizzotto, Journal of Electronic Materials, Vol. 26, pp. 883-887 (1997).
    83. S. Choi, T. R. Bieler, J. R. Lucas, and K. N. Subramanian, Journal of Electronic Materials, Vol. 28, pp. 1209-1215 (1999).
    84. D. Gregersen, L. Buene, T. Finstad, O. Lonsjo, and T. Olsen, Thin Solid Films, Vol. 84, pp. 185-196 (1981).
    85. S. Nakahare, R. J. McCoy, L. Buene, and J. M.Vandenberg, Thin Solid Films, Vol. 84, pp. 185-196 (1981).
    86. E. B. Hannech and C. R. Hall, Materials Science and Technology, Vol. 8, pp. 817-824 (1992).
    87. J. L. Murray, Metallurgical Transactions A, Vol.15A, pp. 261-268 (1984).
    88. P. R. Subramanian and J. H. Perepezko, Journal of Phase Equilibria, Vol. 14, pp. 62-75 (1993).
    89. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic
    Properties of the Element, ASM, Materials Park, Ohio (1973).
    90. U. R. Kattner and W. J. Boettinger, Journal of Electronic Materials, Vol. 28, pp. 603-610 (1994).
    91. P. Y. Chevalier, Thermochimica Acta, Vol. 136, pp. 45-54 (1988).
    92. Y. Xie and Z. Qiau, Journal of Phase Equilibria, Vol. 17, pp. 208-217 (1993).
    93. J. H. Shim, C. S. Oh, B. J. Lee and D. N. Lee, Zeitschrift feur Metallkunde, Vol. 87, pp. 205-212 (1996).
    93. Y. Y. Chuang, R. Schmid, and Y. A. Chang, Acta Metalurgica et Materialia, Vol. 33, pp. 1369-1380 (1985).
    94. J. E. Freund, Mathematical Statistics, 5th Edition, Prentice-Hall, New Jersey (1992).
    95. WinPhaD, a software for Binary Phase Diagram Calculation,
    CompuTherm LLC, 437 S. Yellowstone Drive, Suite 217,
    Wisconsin-Madison, WI 43719, USA (2000).
    96. A.T. Dinsdale, Calphad-Computer coupling of Phase Diagrams and Thermochemistry, Vol. 15, pp.317-425 (1991).
    97. S. Hassam, M. Gambino, M. Gaune-Escard, J. P. Bros, and J. Ågren, Metallurgical Transactions A, vol. 19A, pp. 409-416 (1988).
    98. D. R. Gaskell, Introduction to Metallurgical Thermodynamics, 2th Edition, McGraw-Hill, New York, pp. 343 (1981).
    99. P. J. Spencer and M. J. Pool, Transactions of the Metallurgical Societry of AIME, Vol. 242, pp. 291-295 (1968).
    100. J. Rakotomavo, M. Gaune-Escard, J. P. Bros, and P. Gaune, Berichte der Bunsen-Gesellschaft feur Physikalische Chemie, vol. 88, pp. 663-670 (1984).
    101. Pandat, a Software for Multicomponent Phase Diagram Calculation, Computherm LLC, 437 S. Yellowstone Drive, Suite 217, Wisconsin-Madison, WI 43719, USA (2000).
    102. M. Hillert, Calphad-Computer coupling of Phase Diagrams and Thermochemistry, Vol. 4, pp. 1-12 (1980).
    103. M. Hillert, “Phase Equilibria, Phase Diagrams and Phase
    Transformations-Their Thermodynamic Basic”, Cambridge
    Universuty Press, Cambridge, U. K., pp. 462-463 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE