簡易檢索 / 詳目顯示

研究生: 黃哲緯
Huang, Che-Wei
論文名稱: 量子混態訊號之可存取訊息量
Accessible Information for Quantum Mixed-state Signals
指導教授: 呂忠津
Lu, Chung-Chin
口試委員: 林茂昭
蘇育德
蘇賜麟
加藤研太郎
Kentaro Kato
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 量子混態訊號可存取訊息量
外文關鍵詞: Quantum Mixed-state Signals, Accessible Information
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可存取訊息量 (Accessible Information) 是一個量子通訊系統之安全性的評估因子,該訊息量被定義為: 給定一個訊號源 (Signal Source),針對量子測量最佳化可得到的最大互訊息量 (Maximum Mutual Information)。給定訊號源的情況下,互訊息 (Mutual Information) 對於測量是一凸函數,並且所有測量本身形成一凸集合 (Convex Set),因此上述之最佳化屬於凸集最大化 (Convex Maximization) 問題。目前這種最佳化問題並沒有一般解,但是,先前的研究者已經針對這個問題的子集合,例如針對某一類訊號源,提出一些結果。以往的研究者,幾乎都是以純態訊號 (Pure-state Signals) 為對象做研究,因為純態訊號比較容易處理。但是真實世界並不存在穩定的純態訊號。量子狀態在真實世界皆是以混態 (Mixed states) 的方式穩定存在。因此,對混態訊號的探討有其必要性。除了上述原因,混態訊號也是大多數量子通訊系統中,竊聽者所能獲取的訊號形式。如果能夠得知竊聽者所能獲得的最大互訊息量,那就多了一個層面分析量子通訊系統的安全性。
    我們探討雙重對稱混態訊號 (Doubly Symmetric Mixed-state Signals, DSMS) 的可存取訊息量。雙重對稱混態訊號是竊聽者在αη類型的量子通訊系統中所能竊取到的訊號形式。我們證明一個軌道 (Orbit) 的量子測量就足夠達到可存取訊息量。除此之外,針對二元雙重對稱混態訊號 (Binary DSMS),我們計算出可存取訊息量的閉合形式解 (Closed-form Solution),並且我們發現分解平方根測量 (Decomposed Square-Root Measurement, DSRM) 是此可存取訊息量的最大化器 (Maximizer) 之一。根據附錄的計算,分解平方根測量和平方根測量 (Square-Root Measurement, SRM) 可以達到同樣的互訊息量。所以,平方根測量也是最大化器之一。


    第一章 簡介••••••••••••••••••••••••••••••1 第二章 過去的研究結果••••••••••••••2 第三章 雙重對稱混態訊號•••••••••••3 第四章 結論••••••••••••••••••••••••••••••4 附 錄 英文論文本••••••••••••••••••••5

    Bibliography
    [Alf71] E. M. Alfsen. Compact Convex Sets and Boundary Integrals. Springer, 1971.
    [BCKY03] G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen. Secure Communication
    Using Mesoscopic Coherent States. Phys. Rev. Lett., 90(22):227901{1{4, June
    2003.
    [BKMH97] M. Ban, K. Kurokawa, R. Momose, and O. Hirota. Optimum Measurements for
    Discrimination among Symmetric Quantum States and Parameter Estimation.
    Int. J. Theor. Phys., 36(6):1269{1288, 1997.
    [CH03] C.-L. Chou and L. Y. Hsu. Minimum-error Discrimination between Symmetric
    Mixed Quantum States. Phys. Rev. A, 68(4):042305{1{5, October 2003.
    [CKL07] G. Chen, L. Kau man, and S. J. Lomonaco. Mathematics of Quantum Com-
    putation and Quantum Technology. Chapman and Hall/CRC, 2007.
    [CT06] T. M. Cover and H. A. Thomas. Elements of Information Theory. Wiley-
    Interscience, 2006.
    [Dav78] E. B. Davies. Information and Quantum Measurement. IEEE Trans. Inf.
    Theory, 24(5):596{599, September 1978.
    [Dec09] T. Decker. Symmetric Measurements Attaining the Accessible Information.
    IEEE Trans. Inf. Theory, 55(5):2375{2383, May 2009.
    [EMV04] Y. C. Eldar, A. Megretski, and G. C. Verghese. Optimal Detection of Symmetric
    Mixed Quantum States. IEEE Trans. Inf. Theory, 50(6):1198{1207, June
    2004.
    [Hel67] C. W. Helstrom. Detection Theory and Quantum Mechanics. Inform. Contr.,
    10(3):254{291, March 1967.
    [Hel76] C. W. Helstrom. Quantum Detection and Estimation Theory. Academic Press,
    1976.
    [HK71] K. M. Ho man and R. Kunze. Linear Algebra. Prentice Hall, 2 edition, 1971.
    [Hol73a] A. S. Holevo. Bounds for the Quantity of Information Transmitted by a Quantum
    Communication Channel. Probl. Peredachi Inf., 9(3):3{11, 1973.
    [Hol73b] A. S. Holevo. Information-Theoretical Aspects of Quantum Measurement.
    Probl. Peredachi Inf., 9(2):110{118, 1973.
    [Hol73c] A. S. Holevo. Statistical Decision Theory for Quantum Systems. J. of Multivar.
    Anal., 3(4):337{394, December 1973.
    [HW94] P. Hausladen and W. K. Wootters. A 'Pretty Good' Measurement for Distinguishing
    Quantum States. J. Modern Opt., 41(12):2385{2390, February 1994.
    [KH03] K. Kato and O. Hirota. Square-root Measurement for Quantum Symmetric
    Mixed State Signals. IEEE Trans. Inf. Theory, 49(12):3312{3317, December
    2003.
    [KOH99] K. Kato, M. Osaki, and O. Hirota. Derivation of Classical Capacity of a Quantum
    Channel for a Discrete Information Source. Phys. Rev. A, 251(3):157{163,
    January 1999.
    [Pus02] M. Puschel. Decomposing Monomial Representations of Solvable Groups. J.
    Sym. Comput., 34(6):561{596, 2002.
    [Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
    [SBJ+99] M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, and O. Hirota. Accessible
    Information and Optimal Strategies for Real Symmetrical Quantum Sources.
    Phys. Rev. A, 59(5):3325{3335, May 1999.
    [Ser77] J.-P. Serre. Linear Representations of Finites Groups. Springer, 1977.
    [Sho04] P. W. Shor. The Adaptive Classical Capacity of a Quantum Channel, or
    Information Capacities of Three Symmetric Pure States in Three Dimensions.
    IBM J. of Research and Development, 48(1):115{137, January 2004.
    [SKIH98] M. Sasaki, K. Kato, M. Izutsu, and O. Hirota. Quantum Channels Showing
    Superadditivity in Classical Capacity. Phys. Rev. A, 58(1):146{158, July 1998.
    [YKL70] H. P. Yuen, R. S. Kennedy, and M. Lax. On Optimal Quantum Receivers for
    Digital Signal Detection. Proc. IEEE, 58(10):1770 { 1773, October 1970.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE