簡易檢索 / 詳目顯示

研究生: 林昱志
Lin, Yu-Chih
論文名稱: 基於變化點偵測與力量控制之加工策略應用於機械手臂去毛邊
Machining Strategy Based on Change Point Detection and Force Control for Robotic Deburring
指導教授: 張禎元
Chang, Jen-Yuan
口試委員: 馮國華
Feng, Guo-Hua
張賢廷
Chang, Hsien-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 84
中文關鍵詞: 機械手臂去毛邊切削力學模型手臂剛性分析力量控制變化點偵測
外文關鍵詞: Automated Robotic Deburring, Cutting Force Model, Rigidity Analysis, Robotic Force Control, Change Point Detection
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 去毛邊是金屬加工的最後一道工序,也是決定產品加工品質的關鍵製程。傳統上,這項工藝依賴經驗豐富的老師傅手工完成,不僅效率低下,且加工品質不穩定。面對少子化帶來的勞力短缺,工廠迫切需要替代方案。機械手臂作為解決方案之一,能夠取代勞力密集且危險的工作,但其剛性不足與累積精度誤差限制了在金屬加工領域的廣泛應用。為了克服這些挑戰,本研究開發了一種新的去毛邊策略,結合力量控制與變化點演算法。透過力量控制可以有效減少加工過程中的振動,而變化點演算法則解決了毛邊尺寸的隨機變化。此外,本研究針對航空材料,建立了一套切削力學模型,並對切削過程中的被動參數進行了深入探討,提出了刀具選用的建議。在探討機械手臂剛性,使用條件數分析比較了不同切削姿態對加工品質的影響,並確定了最佳的加工姿態。實驗結果顯示,使用本研究方法可以顯著提高加工品質,表面粗糙度為1.0 μm,已達到業界要求加工標準。


    Deburring represents the final and a critical phase in metalworking, significantly influencing the quality of the finished product. Traditionally, this task has depended on the manual expertise of skilled craftsmen, which often leads to low efficiency and inconsistent quality. Faced with labor shortages due to declining birth rates, the industry urgently requires alternative solutions. Robotic arms offer a potential solution by replacing labor-intensive and hazardous tasks; however, their application in metalworking has been limited due to insufficient rigidity and cumulative precision errors. To overcome these challenges, this study introduces a novel deburring strategy that integrates force control with a change point detection algorithm. Force control effectively mitigates vibrations during the machining process, while the change point algorithm accommodates the random variability in burr dimensions. Moreover, this research develops a cutting mechanics model tailored for aerospace materials and provides an in-depth analysis of passive parameters during the cutting process, offering tool selection recommendations. The study further investigates the rigidity of robotic arms through condition number analysis, comparing the effects of different cutting postures on machining quality and identifying the optimal posture. Experimental results demonstrate that the methodologies developed in this research substantially enhance machining quality, achieving a surface roughness of 1.0 µm, which meets industry processing standards.

    致謝 II 摘要 III Abstract IV 目錄 I 圖目錄 IV 表目錄 VII 符號說明 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 切削力學模型 4 1.3.2 機械手臂剛性分析 7 1.3.3 機械手臂控制方法 11 1.4 研究問題統整與目標 15 1.5 研究方法 16 1.6 章節規劃 17 1.7 預期成果 18 1.8 本論文研究贊助與產出 19 第二章 切削力學模型 20 2.1 前言 20 2.2 理論背景 20 2.3 切削環境建立 24 2.3.1 夾治具設計 24 2.3.2 手臂路徑生成 27 2.4 被動切削參數分析 29 2.4.1 主軸轉速 30 2.4.2 刀具刃數 32 2.4.3 進給速度 34 2.5 建立切削力學模型 36 2.6 切削力模型應用 42 2.7 本章總結 42 第三章 機械手臂剛性問題 44 3.1 前言 44 3.2 手臂運動學 45 3.2.1 手臂順向運動學 45 3.2.2 手臂逆向運動學 48 3.3 Jacobian 矩陣 49 3.4 手臂剛性矩陣 50 3.5 手臂操作姿態 53 3.6 本章總結 57 第四章 去毛邊策略 58 4.1 前言 58 4.2 材料移除率 59 4.3 貝葉斯變化點偵測 60 4.4 演算法結果與驗證 63 4.5 控制系統架構 65 4.6 本章總結 69 第五章 結論與未來展望 70 5.1 結論 70 5.2 本文貢獻 72 5.3 未來展望 73 5.3.1 力量控制精確性的提升 73 5.3.2 使用剛性更好的機械手臂 73 5.3.3 切削顫振的預測 74 附錄一 75 附錄二 78 參考文獻 81

    [1] E. Villagrossi, C. Cenati, N. Pedrocchi, M. Beschi, and L. Molinari Tosatti, "Flexible robot-based cast iron deburring cell for small batch production using single-point laser sensor," The International Journal of Advanced Manufacturing Technology, vol. 92, pp. 1425-1438, 2017.
    [2] H. Kazerooni, J. Bausch, and B. Kramer, "Automated deburring by robot manipulators," in 1986 American Control Conference, 1986: IEEE, pp. 1749-1755.
    [3] M. G. Her and H. Kazerooni, "Automated Robotic Deburring of Parts Using Compliance Control," Journal of Dynamic Systems, Measurement, and Control, vol. 113, no. 1, pp. 60-66, 1991, doi: 10.1115/1.2896360.
    [4] J. C. Aurich, D. Dornfeld, P. Arrazola, V. Franke, L. Leitz, and S. Min, "Burrs—Analysis, control and removal," CIRP annals, vol. 58, no. 2, pp. 519-542, 2009.
    [5] M. E. Merchant, "Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip," Journal of applied physics, vol. 16, no. 5, pp. 267-275, 1945.
    [6] N. Fang, I. Jawahir, and P. Oxley, "A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool," International Journal of Mechanical Sciences, vol. 43, no. 2, pp. 557-580, 2001.
    [7] X. Jin and Y. Altintas, "Prediction of micro-milling forces with finite element method," Journal of Materials Processing Technology, vol. 212, no. 3, pp. 542-552, 2012.
    [8] Y. Altintas and A. Ber, "Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design," Appl. Mech. Rev., vol. 54, no. 5, pp. B84-B84, 2001.
    [9] J. Wang, H. Zhang, and Z. Pan, "Machining with flexible manipulators: Critical issues and solutions," in Industrial Robotics: Programming, Simulation and Applications: IntechOpen, 2006.
    [10] L. Yuan, Z. Pan, D. Ding, S. Sun, and W. Li, "A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism," IEEE/ASME Transactions on mechatronics, vol. 23, no. 5, pp. 2240-2251, 2018.
    [11] E. Abele, M. Weigold, and S. Rothenbücher, "Modeling and identification of an industrial robot for machining applications," CIRP annals, vol. 56, no. 1, pp. 387-390, 2007.
    [12] G. Xiong, Y. Ding, and L. Zhu, "Stiffness-based pose optimization of an industrial robot for five-axis milling," Robotics and Computer-Integrated Manufacturing, vol. 55, pp. 19-28, 2019.
    [13] S. Mejri, V. Gagnol, T.-P. Le, L. Sabourin, P. Ray, and P. Paultre, "Dynamic characterization of machining robot and stability analysis," The International Journal of Advanced Manufacturing Technology, vol. 82, pp. 351-359, 2016.
    [14] L. Cen and S. N. Melkote, "CCT-based mode coupling chatter avoidance in robotic milling," Journal of Manufacturing Processes, vol. 29, pp. 50-61, 2017.
    [15] Y. Zhang, T. Zhou, T. Hu, and J. Qiao, "Stability analysis of milling chatter in six-degree-of-freedom industrial robots," The International Journal of Advanced Manufacturing Technology, vol. 127, no. 5, pp. 2861-2880, 2023.
    [16] F. L. Princely and T. Selvaraj, "Vision assisted robotic deburring of edge burrs in cast parts," Procedia Engineering, vol. 97, pp. 1906-1914, 2014.
    [17] R. Béarée, J.-Y. Dieulot, and P. Rabaté, "An innovative subdivision-ICP registration method for tool-path correction applied to deformed aircraft parts machining," The International Journal of Advanced Manufacturing Technology, vol. 53, pp. 463-471, 2011.
    [18] J. R. D. Posada et al., "Automatic programming and control for robotic deburring," in Proceedings of ISR 2016: 47st International Symposium on Robotics, 2016: VDE, pp. 1-8.
    [19] Z. Pan and H. Zhang, "Robotic machining from programming to process control: a complete solution by force control," Industrial Robot: An International Journal, vol. 35, no. 5, pp. 400-409, 2008.
    [20] G. Zeng and A. Hemami, "An overview of robot force control," Robotica, vol. 15, no. 5, pp. 473-482, 1997.
    [21] T. Yoshikawa, "Force control of robot manipulators," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), 2000, vol. 1: IEEE, pp. 220-226.
    [22] M. Her and H. Kazerooni, "Automated robotic deburring of parts using compliance control," 1991.
    [23] X. Wang, Y. Wang, and Y. Xue, "Adaptive control of robotic deburring process based on impedance control," in 2006 4th IEEE International Conference on Industrial Informatics, 2006: IEEE, pp. 921-925.
    [24] H.-C. Song and J.-B. Song, "Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching," International Journal of Precision Engineering and Manufacturing, vol. 14, pp. 85-91, 2013.
    [25] Y. Tao et al., "Fuzzy PID control method of deburring industrial robots," Journal of Intelligent & Fuzzy Systems, vol. 29, no. 6, pp. 2447-2455, 2015.
    [26] K.-i. Shimokura and S. Liu, "Programming deburring robots based on human demonstration with direct burr size measurement," in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: IEEE, pp. 572-577.
    [27] E. Villagrossi, N. Pedrocchi, M. Beschi, and L. Molinari Tosatti, "A human mimicking control strategy for robotic deburring of hard materials," International Journal of Computer Integrated Manufacturing, vol. 31, no. 9, pp. 869-880, 2018.
    [28] Y.-C. Lin, K.-Y. Peng, and J.-Y. Chang, "Concurrent burr detection with collaborative robot," 2023.
    [29] H.-H. Tsai, Y.-C. Lin, and J.-Y. J. Chang, "Automated Robotic Deburring Utilizing Active Force-controlled End-effector," International Journal of iRobotics, vol. 6, no. 4, pp. 1-7, 2023.
    [30] G. Stepan, Z. Dombovari, and J. Munoa, "Identification of cutting force characteristics based on chatter experiments," CIRP annals, vol. 60, no. 1, pp. 113-116, 2011.
    [31] G. Miller, "Pilot study for cutting force model of robotic deburring," Carleton University, 2021.
    [32] X.-H. Long, B. Balachandran, and B. Mann, "Dynamics of milling processes with variable time delays," Nonlinear Dynamics, vol. 47, pp. 49-63, 2007.
    [33] S. Metals, "Inconel alloy 718," Publication Number SMC-045. Special Metals Corporation, 2007.
    [34] "ATI Industrial Automation - Force/Torque Sensors. (n.d.). Retrieved from https://www.ati-ia.com/products/ft/ft_models.aspx?id=gamma." https://www.ati-ia.com/products/ft/ft_models.aspx?id=gamma (accessed Nov. 23, 2023).
    [35] NAKANISHI. "Operation Manual Download." https://en.nakanishi-spindle.com/wp-content/themes/nakanishi-spindle/common/pdf/en/om-k0438008_e3000_controller_manual_en.pdf (accessed May.29, 2024).
    [36] K. A. Adem, R. Fales, and A. S. El-Gizawy, "Identification of cutting force coefficients for the linear and nonlinear force models in end milling process using average forces and optimization technique methods," The International Journal of Advanced Manufacturing Technology, vol. 79, pp. 1671-1687, 2015.
    [37] F. Ding and C. Liu, "Applying coordinate fixed Denavit–Hartenberg method to solve the workspace of drilling robot arm," International journal of advanced robotic systems, vol. 15, no. 4, p. 1729881418793283, 2018.
    [38] D. L. Pieper, The kinematics of manipulators under computer control. Stanford University, 1969.
    [39] S.-F. Chen and I. Kao, "Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers," The International Journal of Robotics Research, vol. 19, no. 9, pp. 835-847, 2000.
    [40] J. K. Salisbury, "Active stiffness control of a manipulator in cartesian coordinates," in 1980 19th IEEE conference on decision and control including the symposium on adaptive processes, 1980: IEEE, pp. 95-100.
    [41] J. Angeles, Fundamentals of robotic mechanical systems: theory, methods, and algorithms. Springer, 2003.
    [42] G. J. Van den Burg and C. K. Williams, "An evaluation of change point detection algorithms," arXiv preprint arXiv:2003.06222, 2020.
    [43] S. Aminikhanghahi and D. J. Cook, "A survey of methods for time series change point detection," Knowledge and information systems, vol. 51, no. 2, pp. 339-367, 2017.
    [44] R. P. Adams and D. J. MacKay, "Bayesian online changepoint detection," arXiv preprint arXiv:0710.3742, 2007.
    [45] S. Robotics. "Introduction to UR RTDE - SDU Robotics." https://sdurobotics.gitlab.io/ur_rtde/introduction/introduction.html (accessed Nov. 23, 2023).
    [46] "ACCRETECH SURFCOM TOUCH 35/40/45/50." https://www.accretech.com/en/product/measuring/system/surface/surfcomtouch.html (accessed Apr. 24, 2024).

    QR CODE