研究生: |
羅驛 Lo, Yi |
---|---|
論文名稱: |
加權分量迴歸 Weighted Quantile Regression |
指導教授: |
徐南蓉
Hsu, Nan-Jung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 加權分量迴歸 、分量迴歸 |
外文關鍵詞: | asymptotic relative efficiency, composite quantile regression, model selection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
迴歸分析是一種研究多個量化變數間關係的統計方法,尤其分量迴歸
(quantile regression) 是文獻上被廣泛使用方法之一,其概念為描述解釋變數在反應變數不同分量 (quantile) 上的影響效果。透過不同分量值,可將解釋變數對反應變數的影響更詳盡的呈現。本研究利用Zou and Yuan(2008)在假設所有分量下的迴歸係數(不包含截距項)\ 皆相等的情況下,所提出新的分量迴歸的估計方法 CQR (composite quantile regression),在誤差分配 (error distribution) 不為常態分配下,其估計量的表現比 OLS (ordinary least square) 來得好。參考 CQR 的想法,我們試著將多個分量迴歸的聯合漸進分配,在與 CQR 相同假設下,經由多維常態分配得到的最大概似估計量,我們將此估計方法稱為 WQR (weighted quantile regression)。我們將 WQR 與過去的方法作 asymptotic relative efficiency 的比較,在誤差分配不為常態分配下表現最好,而從另一個研究發現,在有限樣本下 CQR 也能有很好的表現。在模擬分析方面考慮解釋變數過多的模型,所以也試著加入一些參數縮減方法作參考。最後整合上述的方法來探討台灣股市與美國股市有關連動性的實證分析。
[1] Chuang, C.C., Kuan, C.M., Lin, H. (2009). Causality in quantiles and dynamic
stock return-volume relations. Journal of Banking & Finance 33, 1351-1360.
[2] Diks C. and V. Panchenko (2005). A note on the HiemstraJones test for Granger
causality. Studies in Nonlinear Dynamic & Econometrics 9, article 4:17.
[3] Engle, R. F. and S. Manganelli. (2004). CaViaR: Conditional autoregressive Value
at Risk by regression quantiles. Journal of Business and Economic Statistics 22,
367-381.
[4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association 96, 13481360.
[5] Furno, M. (2004). Arch tests and quantile regression. Journal of Statistical Compu-
tation and Simulation, 74, 277-292.
[6] Granger, C.W.J. (1969). Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37, 424-438.
[7] Hiemstra and J. Jones (1994). Testing for linear and nonlinear Granger causality in
the stock price-volume relation. Journal of Finance 49, 16391664.
[8] Hoerl, A. E. and Kennard, R.W. (1970). Ridge regression, biased estimation for
nonorthogonal problems. Technometrics 12, 55-68.
[9] Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 3350.
[10] Koenker, R. and Bassett, G. (1982). Robust tests for heteroscedasticity based on
regression quantiles. Econometrica 50, 4361.
[11] Koenker, R. and Machado, J. (1999). Goodness of ‾t and related inference
processes for quantile regression. Journal of the American Statistical Association
94, 12961310.
[12] Koenker, R. (2005). Quantile Regression. Cambridge University Press.
[13] Koenker, R. and Z. Xiao (2006). Quantile autoregression. Journal of the American
Statistical Association 101, 980990.
[14] Taylor, J.W. and R. Buizza (2006). Density forecasting for weather derivative pricing.
International Journal of Forecasting 22, 2942.
[15] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B (Methodological) 58, 267288.
[16] Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statistica Sinica
37, 801817.
[17] Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics
and Data Analysis 5, 813829.
[18] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association 101, 14181429.
[19] Zou, H. and M. Yuan (2008). Composite quantile regression and the oracle model
selection theory. Annals of Statistics 36, 1108-1126.
[20] 楊筆琇 (1998),台灣電子股指數與美國股價指數互動關係之實證研究,國立成功大學企業管理學系碩士論文。
[21] 廖珮真 (1992),美、日、英、港、臺五國股市報酬率多元時間數列關聯性之研究,國立台灣大學商學研究所碩士論文。