簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Guan-Ting
論文名稱: 探討函數體上的Drinfeld-Siegel可逆模函數
On Drinfeld-Siegel Units over Function Fields
指導教授: 魏福村
Wei, Fu-Tsun
口試委員: 于靖
Yu, Jing
張介玉
Chang, Chieh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 33
中文關鍵詞: Drinfeld模曲線Drinfeld可逆模函數Drinfeld-Siegel可逆模函數尖點因子子群Stickelberger分佈
外文關鍵詞: Drinfeld modular curve, Drinfeld modular unit, Drinfeld-Siegel unit, cuspidal divisor subgroup, Stickelberger distribution
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們參考Kubert和Lang的做法,以Stickelberger分佈去分析Drinfeld-Siegel可逆模函數在Drinfeld模曲線尖點處的零根數。我們證明在給定的等級下Drinfeld-Siegel可逆模函數能夠生成出對於所有Drinfeld可逆模函數的一個有限指數子群,並且能推論出對於Drinfeld模曲線的Picard群中尖點因子子群的有限性。


    We follow Kubert and Lang's method on Stickelberger distribution to analyze the orders of vanishing of Drinfeld-Siegel units at cusps of Drinfeld modular curves. Our result shows that for a given level, the Drinfeld-Siegel units generate a finite index subgroup of all Drinfeld modular units. A direct consequence is the finiteness of the cuspidal divisor subgroup of the Picard group of a Drinfeld modular curve.

    Abstract 誌謝辭 Contents Chapter 1. Introduction----------------------------------------1 Chapter 2. The Cartan Groups-----------------------------------5 Chapter 3. Distributions---------------------------------------7 3.1. Stickelberger Distributions-------------------------------8 3.2. Bernoulli Distributions----------------------------------10 3.3. Hurwitz Zeta Function------------------------------------12 Chapter 4. Drinfeld Modular Units-----------------------------17 4.1. Drinfeld Modular Forms-----------------------------------17 4.2. Klein Forms----------------------------------------------19 4.3. Drinfeld Modular Units and Cusps-------------------------21 4.4. Drinfeld-Siegel Units------------------------------------24 4.5. Examples of Indices--------------------------------------26 4.6. Drinfeld Modular Curves and Cuspidal Divisor Subgroups---27 Appendix A. Code----------------------------------------------29 List of Symbols-----------------------------------------------31 Bibliography--------------------------------------------------33

    A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second Edition, Springer, 2014.
    E.-U. Gekeler, Drinfeld Modular Curves, Lecture Notes in Math. 1231, Springer-Verlag, 1986.
    E.-U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math. 93, 1988, 667-700.
    E.-U. Gekeler, On the cuspidal divisor class group of a Drinfeld modular curve, Doc. Math. J. DMV 2, 1997, 351-374.
    E.-U. Gekeler, A survey on Drinfeld modular forms, Turk J Math. 23, 1999, 485-518.
    E.-U. Gekeler, A note on the finiteness of certain cuspidal divisor class groups, Isr. J. Math. 118, 2000, 357–368.
    M. M. Kapranov, On cuspidal divisors on the modular varieties of elliptic modules, Math. USSR-Izv. 30 ,1988, no.3, 533–547.
    D. Kubert and S. Lang, Modular Units, Springer-Verlag, 1981.
    M. Rosen, Number Theory in Function Fields, GTM 210, Springer-Verlag, New York, 2002.

    QR CODE