簡易檢索 / 詳目顯示

研究生: 廖玫鈞
Liao, Mei-Chun
論文名稱: p-GaN/Ni/Al與p-GaN/Pd/Al做為紫外光發光二極體光反射式歐姆電極光電特性之研究
Study of p-GaN/Ni/Al and p-GaN/Pd/Al Optical Reflective Ohmic Contacts for Ultraviolet LED
指導教授: 黃倉秀
Huang, Tsung-Shiew
口試委員: 黃金花
Huang, Jin-Hua
洪慧芬
Hong, Hui-Fen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 紫外光發光二極體光反射式歐姆電極光電特性
外文關鍵詞: Reflective Ohmic Contacts, Ni/Al, Pd/Al
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在紫外光 (UV) 覆晶式發光二極體之光反射式歐姆電極應用中,純Al之紫外光反射率最為優秀,但純Al與p-GaN間因功函數差異,不能形成歐姆接觸,因此本研究利用高功函數的Ni及Pd作為Al與p-GaN間的接觸層來提升界面導電特性。本論文以雙電子槍蒸鍍系統製備p-GaN的紫外光反射式歐姆電極Ni (1 nm)/Al (160 nm)、Ni (2.5 nm)/Al (160 nm)、Ni (5 nm)/Al (160 nm)、Ni (8 nm)/Al (160 nm)及Al48Ni52 (60 nm)/Al (100 nm);Pd (2.5 nm)/Al (160 nm)、Pd (5 nm)/Al (160 nm)及Al25Pd75 (9 nm)/Al (160 nm) 等八組試片,研究不同Ni與Pd接觸層厚度及不同退火溫度對於Ni/Al及Pd/Al紫外光反射式歐姆電極光電特性的影響,探討內容主要為歐姆電極的光反射率、金屬薄膜片電阻與特徵接觸電阻。實驗結果顯示,隨著接觸層Pd或Ni厚度的增加,UV光反射率下降;隨著退火溫度上升,部分的Al可以擴散到界面使光反射率增加,但是造成電性劣化。固定退火400 ℃時,在相同接觸層材料中,接觸層越厚,其特徵接觸電阻越低;而在相同接觸層厚度下,Pd/Al的特徵接觸電阻又比Ni/Al低。在Ni-Al系統中,可形成歐姆接觸退火的最高溫度為400 ℃,而在Pd-Al系統中,最高溫度為500 ℃。綜合考量退火溫度、UV光反射率與特徵接觸電阻,Pd (5 nm)/Al (160 nm) 快速退火400 ℃後可得最低特徵接觸電阻 3×10-3 Ω-cm2,光反射率約58%-63% (270 nm-350 nm);Al25Pd75 (9 nm)/Al (160 nm) 退火500 ℃後可得最低特徵接觸電阻2×10-2 Ω-cm2,光反射率約58%-63% (270 nm-350 nm);而Ni (5 nm)/Al (160 nm) 快速退火400 ℃後可得特徵接觸電阻3×10-1 Ω-cm2,但光反射率約70% (270 nm-350 nm)。


    The ultraviolet light reflectivity of Al is the most excellent in the applications of flip-chip ultraviolet reflective light-emitting diodes (UV LED). However, because of low work function of Al, it can not form ohmic contact with p-GaN. Therefore, contact metals such as Ni or Pd is needed to obtain the ohmic contact with p-GaN.
    Ni (1 nm)/Al (160 nm)、Ni (2.5 nm)/Al (160 nm)、Ni (5 nm)/Al (160 nm)、Ni (8 nm)/Al (160 nm), Al48Ni52 (60 nm)/Al (100 nm), Pd (2.5 nm)/Al (160 nm)、Pd (5 nm)/Al (160 nm) and Al25Pd75 (9 nm)/Al (160 nm) were prepared to study the effects of Ni or Pd contact layer thickness and annealing temperature on the photoelectric properties of optical reflective ohmic contacts.
    In this study, optical reflectivity and contact resistivity of Ni/Al and Pd/Al ohmic contacts to p-GaN were investigated. In contrast to Ni/Al samples, Pd/Al contacts retained their linear Current-Voltage curve after rapid thermal annealing at 500 °C in argon ambient. According to the results of the study, it is suggested that the UV reflectivity decreases with the increase of the thickness of Pd or Ni contact layer. As the annealing temperature increases, Al diffuses to the interface between metal and p-GaN to increase the optical reflectivity, but causes the electrical deterioration. At the same contact layer thickness, the specific contact resistance of Pd/Al is lower than Ni/Al. In Ni-Al system, the maximum annealing temperature for ohmic contact can be 400 ° C, while in Pd-Al system, the maximum annealing temperature is 500 ° C. After 400 ° C rapid thermal annealing, Pd (5 nm) / Al (160 nm) could obtain the lowest specific contact resistance of 3 × 10-3 Ω-cm2 with optical reflectivity about 58%-63% (270 nm-350 nm), and Ni (5 nm)/Al (160 nm) obtains specific contact resistance of 3 × 10-1 Ω-cm2 with optical reflectivity about 70% (270 nm-350 nm). After 500 ° C rapid thermal annealing, Al25Pd75 (9 nm)/Al (160 nm) obtains the specific contact resistance of 2 × 10-2 Ω-cm2 with optical reflectivity about 58%-63% (270 nm-350 nm).

    摘 要 I 致 謝 II 目 錄 III 表 格 目 錄 IV 圖 片 目 錄 V 第 一 章 緒 論 1 1-1 前言 1 1-2 基本理論 3 1-2-1 金屬/半導體歐姆接面的基本理論 3 1-2-2 特徵接觸電阻 5 1-2-3 四點探針量測原理 7 1-2-4 環形遷移長度量測法 (Circular Transfer Length Method, CTLM) 的理論 8 1-3 文獻回顧 10 1-4 研究動機與目的 17 第 二 章 實驗 18 2-1 試片設計 18 2-2 實驗方法 19 第 三 章 結果與討論 23 3-1 SEM影像分析 23 3-2 退火對各試片光反射率的影響 23 3-3 退火對金屬薄膜片電阻的影響 26 3-4 CTLM量測結果與分析 26 第 四 章 結論 33 參 考 文 獻 35

    1. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda,“Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,”Appl. Phys. Lett. 48(5), 353-355 (1986).
    2. S. Nakamura,“GaN growth using GaN buffer layer,”Jpn. J. Appl. Phys. 30(10A), L1705-L1707 (1991).
    3. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki,“P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),”Jpn. J. Appl. Phys. 28(12A), L2112-L2114 (1989).
    4. S. Nakamura, M. Senoh and T. Mukai,“Highly p-typed Mg-doped GaN films grown with GaN buffer layers,”Jpn. J. Appl. Phys. 30 (10A), L1708-L1711 (1991).
    5. A. Y. C. Yu,“Electron tunneling and contact resistance of metal-silicon contact barriers,”Solid-State Electron. 13(2), 239-247 (1970).
    6. C. Y. Chang, Y. K. Fang, and S. M. Sze,“Specific contact resistance of metal-semiconductor barriers,”Solid-State Electron. 14(7), 541-550 (1971).
    7. S. M. Sze, Physics of semiconductor devices (Wiley, New York), p.245, 1981.
    8. C. R. Crowell, and V. L. Rideout,“Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers,”Solid-State Electron. 12(2), 89-105 (1969).
    9. R. Stratton, and F. A. Padovani,“Differential resistance peaks of Schottky barrier diodes,”Solid-State Electron. 10(8), 813-821 (1967).
    10. F. A. Padovani, and R. Stratton,“Field and thermionic-field emission in Schottky barriers,”Solid-State Electron. 9(7), 695-707 (1966).
    11. 施敏,半導體元件物理與製作技術,高立 p. 40-44,1996年。
    12. F. M. Smits,“Measurements of sheet resistivity with the four-point probe,” Bell System Technical Journal (BSTJ). 37, 711-718 (1958).
    13. Simon S. Cohen, and Gennady Sh. Gildenblat, Metal-semiconductor contacts and devices. 13, p.112-116, 1986.
    14. D. K. Schroder, Semiconductor material and device characterization, p.144-145, 2006.
    15. G. S. Marlow, and M.B. Das,“The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,”Solid-State Electron. 25(2), 91-94 (1982).
    16. 陳明權,藍光發光二極體不同量子井厚度的內部量子效率之研究,國立交通大學電子與光電學程碩士論文,2009年。
    17. T. Nishida, H. Saito, and N. Kobayashi,“Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice,”Appl. Phys. Lett. 78(4), 399-400 (2001).
    18. T. Nishida, H. Saito, and N. Kobayashi,“Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region,”Appl. Phys. Lett. 78(25), 3927-3928 (2001).
    19. T. G. Zhu, U. Chowdhury, J. C. Denyszyn, M. M. Wong, and R. D. Dupuis,“AlGaN/AlGaN UV light-emitting diodes grown on sapphire by metalorganic chemical vapor deposition,”J. Cryst. Growth. 248, 548-551 (2003).
    20. I. L. Lu, Y. R. Wu, and J. Singh,“A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method,”J. Appl. Phys. 108, 124508 (2010).
    21. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers,“Advances in group III-nitride-based deep UV light-emitting diode technology,”Semicond. Sci. Technol. 26,014036 (2011).
    22. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong,“Review─Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency,”J. Solid State. Sci. Technol. 6(4), Q42-Q52 (2017).
    23. P. Dong, J. Yan, Y. Zhang, J. Wang, J. Zeng, C. Geng, P. Cong, L. Sun, T. Wei, L. Zhao, Q. Yan, C. He, Z. Qin, and J. Li,“AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency,”J. Cryst. Growth. 395, 9-13 (2014).
    24. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama,“Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,”Appl. Phys. Express. 10, 031002 (2017).
    25. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata,“Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,”Jpn. J. Appl. Phys. 53, 100209 (2014).
    26. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback,“AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,”Appl. Phys. Express. 5, 082101 (2012).
    27. N. Maeda, and H. Hirayama,“Improvement of light-extraction efficiency of deep-UV LEDs using transparent p-AlGaN contact layer,”Conference on Lasers and Electro-Optics Pacific Rim (2013).
    28. J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, and L. J. Schowalter,“270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power,”Appl. Phys. Express. 6, 032101 (2013).
    29. T. Kinoshita, T. Obata, T. Nagashima, H. Yanagi, B. Moody, S. Mita, S. Inoue, Y. Kumagai, A. Koukitu, and Z. Sitar,“Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy,”Appl. Phys. Express. 6, 092103 (2013).
    30. A. Fujioka, T. Misaki, T. Murayama, Y. Narukawa, and T. Mukai,“Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells,”Appl. Phys. Express. 3, 041001 (2010).
    31. V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur,“Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells,”Appl. Phys. Lett. 79(25), 4240-4242 (2001).
    32. J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee,“Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,”Appl. Phys. Lett. 102, 151115 (2013).
    33. B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, Jr. and J. Kim,“Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,”Opt. Express 18(22), 23030-23034 (2010).
    34. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman,“High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78(22), 3379-3381 (2001).
    35. W. S. Chen, S. C. Shei, S. J. Chang, Y. K. Su, W. C. Lai, C. H. Kuo, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, and C. F. Shen,“Rapid thermal annealed InGaN/GaN flip-chip LEDs,”IEEE Trans. Electron Devices. 53(1), 32-37 (2006).
    36. J. O. Song, J. S. Ha, and T.Y. Seong,“Ohmic-contact technology for GaN-based light-emitting diodes: Role of p-Type contact,” IEEE Trans. Electron Devices. 57(1), 42-59 (2010).
    37. J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim,“Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,”Appl. Phys. Lett. 73(20), 2953-2955 (1998).
    38. J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech,“p-GaN surface treatments for metal contacts,”Appl. Phys. Lett. 76(4), 415-417 (2000).
    39. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,”J. Appl. Phys. 81(3), 1315-1322 (1997).
    40. Y. Ohba, and A. Hatano,“H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,”Jpn. J. Appl. Phys. 33(10A), L1367-L1369 (1994).
    41. I. Waki, H. Fujioka, M. Oshima, H. Miki, and A. Fukizawa,“Low-temperature activation of Mg-doped GaN using Ni films,”Appl. Phys. Lett. 78(19), 2899-2901 (2001).
    42. T. Passow, R. Gutt, M. Maier, W. Pletschen, M. Kunzer, R. Schmidt, J. Wiegert, D. Luick, S. Liu, K. Köhler, and J. Wagner,“Ni/Ag as low resistive ohmic contact to p-type AlGaN for UV LEDs,”Proc. SPIE. 7617, 76171I (2010).
    43. G. T. Chen, C. C. Pan, C. S. Fang, T. C. Huang, J. I. Chyi, M. N. Chang, S. B. Huang, and J. T. Hsu,“High-reflectivity Pd∕Ni∕Al∕Ti∕Au ohmic contacts to p-type GaN for ultraviolet light-emitting diodes,”Appl. Phys. Lett. 85(14), 2797-2799 (2004).
    44. K. Takehara, K. Takeda, S. Ito, H. Aoshima, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano,“Indium-Tin oxide/Al reflective electrodes for ultraviolet light-emitting diodes,”Jpn. J. Appl. Phys. 51(4R), 042101 (2012).
    45. H. Hirayama, T. Takano, J. Sakai, T. Mino, K. Tsubaki, N. Maeda, M. Jo, Y. Kanazawa, I. Ohshima, T. Matsumoto, and N. Kamata,“Realization of over 10% EQE AlGaN deep-UV LED by using transparent p-AlGaN contact layer,”International Semiconductor Laser Conference (ISLC). ThD7, (2016).
    46. 時聖立,p-GaN/AgPd與p-GaN/AgIn反射式歐姆電極光電特性與熱穩定性之研究,國立清華大學材料科學工程學系碩士學位論文,2014年。
    47. 陳謙,p-GaN/AgTi、p-GaN/AgCo與p-GaN/AgNi 光反射式歐姆電極光電特性與熱穩定性之研究,國立清華大學材料科學工程學系碩士學位論文,2016年。
    48. J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai,“Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,”J. Appl. Phys. 86(8), 4491-4497 (1999).
    49. 張元尚,p型氮化鎵與鎳金歐姆接面之研究,國立清華大學材料科學工程學系碩士學位論文,2003年。
    50. B. P. Luther, J. M. DeLucca, S. E. Mohney, R. F. Karlicek Jr.,“Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN,”Appl. Phys. Lett. 71(26), 3859-3861 (1997).
    51. V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida,“Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n-GaN,”J. Appl. Phys. 92(3), 1712-1714 (2002).
    52. C. I. Wu, and A. Kahn,“Investigation of the chemistry and electronic properties of metal/gallium nitride interfaces,”J. Vac. Sci. Technol. B 16(4), 2218-2223 (1998).
    53. 張佑銜、劉正毓,發光二極體的封裝技術,科學發展月刊,435期,2009年。
    54. H. Tomizawa, H. Dewa, A. Mizuno, T. Taniuchi, and H. Hanaki,“First emission of novel photocathode gun gated by Z-polarized laser pulse,”IPAC, 4101-4103 (2010).
    55. M. Fabian, E. Lewis, T. Newe, and S. I. Lochmann,“Novel multimode fibre-cavity for ring-down experiments,”IEEE Sensors Conference, (2009).

    無法下載圖示 全文公開日期 2022/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE