研究生: |
謝孟珊 Hsieh, Meng Shan |
---|---|
論文名稱: |
合成具形狀控制的磷酸銀晶體並探討晶面效應對其光催化活性及導電性的影響 Synthesis of Shape-Controlled Ag3PO4 Crystals and Their Facet-Dependent Photocatalytic and Electrical Conductivity Properties |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
呂明諺
Lu, Ming-Yen 徐雍鎣 Hsu, Yung-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 磷酸 、銀 、光催化 |
外文關鍵詞: | phosphate, silver, photocatalysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸銀 (Ag3PO4)屬於體心立方堆積的晶格結構,與氧化亞銅及氧化銀具有相同的堆積方式。本研究致力於合成低指數晶面的磷酸銀晶體,探討晶面效應在光學、光催化及電性上的影響。我們藉由調控硝酸銨、氫氧化鈉、硝酸銀以及磷酸氫二鉀試劑的莫爾比,成功地合成出立方體、菱形十二面體、截角菱形十二面體、四面體及四足體,並改變氨水的劑量來控制晶體形狀。粉末式X光繞射儀 (X-ray diffraction patterns, XRD)的鑑定顯示不同晶面之磷酸銀晶體都有其晶面組成的主要特徵峰,而反射式紫外光/可見光光譜儀 (UV-vis diffusive reflectance spectra, UV-DRS)的量測結果推測289奈米的菱形十二面體之紅位移現象是來自於晶面效應的貢獻。此外,我們固定立方體、菱形十二面體及四面體的總表面積進行甲基橙的光降解實驗,發現立方體具有較高的光催化活性,菱形十二面體次之,而四面體不具有光催化活性。為了驗證光催化的結果,進一步利用電子順磁共振儀 (Electron paramagnetic resonance, EPR)分析不同形狀之磷酸銀產生的自由基訊號,根據圖譜分析,氫氧自由基產生的相對含量與光催化的趨勢完全符合,由於立方體產生的氫氧自由基最多使得其光催化效率最高,而四面體不具有光催化效果是因為沒有氫氧自由基的產生,由此可證明晶面效應對於磷酸銀之光催化效果具有很大的影響。在單顆晶體的導電性分析中,發現{110}晶面擁有最好的導電性,{111}晶面次之,而{100}晶面是不導電的。
We have developed a simple aqueous phase method to make Ag3PO4 crystals with various morphologies. Ag3PO4 cubes, rhombic dodecahedra, {100}-truncated rhombic dodecahedra, tetrahedra, and tetrapods have been quickly synthesized by tuning the molar ratios of NH4NO3, NaOH, AgNO3, and K2HPO4 solutions. Increasing the concentration of NH3 in the solution enables shape control. X-ray diffraction (XRD) patterns show the preferred orientation of each shape. The 289 nm rhombic dodecahedra present slightly red-shifted absorption possibly due to the facet effect. In the photodegradation of methyl orange (MO), Ag3PO4 cubes, rhombic dodecahedra and tetrahedra having the same total surface area were used as the photocatalysts. Ag3PO4 cubes with {100} facets are comparably highly active with 90 min of photoirradiation, while {110}-bound rhombic dodecahedra gives a moderate catalytic activity. Remarkably, Ag3PO4 tetrahedra with {111} faces cannot decompose MO. Electron paramagnetic resonance (EPR) measurements show the same activity order as that of photocatalysis. No EPR signals have been detected for Ag3PO4 tetrahedra, indicating that no radicals are generated from the {111} surface. Additionally, the Ag3PO4 crystals have been measured for their electrical conductivity behaviors. All samples showed extremely low electrical current. The Ag3PO4 {111} faces are comparably most conductive at high applied voltages. The {111} faces are moderately conductive, and the {100} faces are non-conductive.
1. Dong, P.; Hou, G.; Liu, C.; Zhang, X.; Tian, H.; Xu, F.; Xi, X.; Shao, R.Materials 2016, 9, 968.
2. Huang, G.-F.; Ma, Z.-L.; Huang, W.-Q.; Tian, Y.; Jiao, C.; Yang, Z.-M.; Wan, Z.; Pan, A. J. Nanomater. 2013, 2013, 371356.
3. Liu, Y.; Fang, L.; Lu, H.; Liu, L.; Wang, H.; Hu, C. Catal. Commun. 2012, 17, 200‒204.
4. Martin, D. J.; Liu, G.; Moniz, S. J. A.; Bi, Y.; Beale, A. M.; Ye, J.; Tang, J. Chem. Soc. Rev. 2015, 44, 7808‒7828.
5. Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y.; Xia, Y. Nano Lett. 2009, 9, 2455‒2459.
6. Liu, S.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914‒11916.
7. Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893‒1895.
8. Zhang, N.; Chen, C.; Mei, Z.; Liu, X.; Qu, X.; Li, Y.; Li, S.; Qi, W.; Zhang, Y.; Ye, J.; Roy, V. A. L.; Ma, R. ACS Appl. Mater. Interfaces 2016, 8, 10367‒10374.
9. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159‒14164.
10. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
11. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672‒19679.
12. Harn, Y.-W.; Yang, T.-H.; Tang, T.-Y.; Chen, M.-C.; Wu, J.-M. ChemCatChem 2015, 7, 80‒86.
13. Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. J. Am. Chem. Soc. 2011, 133, 6490‒6492.
14. Helmholz, L. J. Chem. Phys. 1936, 4, 316‒322.
15. Botelho, G.; Andres, J.; Gracia, L.; Matos, L. S.; Longo, E. ChemPlusChem 2016, 81, 202‒212.
16. Zheng, B.; Wang, X.; Liu, C.; Tan, K.; Xie, Z.; Zheng, L. J. Mater. Chem. A 2013, 1, 12635‒12640.
17. Hu, H.; Jiao, Z.; Yu, H.; Lu, G.; Ye, J.; Bi, Y. J. Mater. Chem. A 2013, 1, 2387‒2390.
18. Dong, C.; Wang, J.; Wu, K.-L.; Ling, M.; Xia, S.-H.; Hu, Y.; Li, X.; Ye, Y.; Wei, X.-W. CrystEngComm 2016, 18, 1618‒1624.
19. Yeo, B.-E.; Seo, Y.; Park, H.; Huh, Y.-D. Bull. Korean Chem. Soc. 2015, 36, 1904‒1907.
20. Martin, D. J.; Umezawa, N.; Chen, X.; Ye, J.; Tang, J. Energy Environ. Sci. 2013, 6, 3380‒3386.
21. Huang, K.; Lv, Y.; Zhang, W.; Sun, S.; Yang, B.; Chi, F.; Ran, S.; Liu, X. Mat. Res. 2015, 18, 939‒945.
22. Yang, X.; Cui, H.; Li, Y.; Qin, J.; Zhang, R.; Tang, H. ACS Catal. 2013, 3, 363‒369.
23. Huang, M. H.; Rej, S.; Hsu, S.-C. Chem. Commun. 2014, 50, 1634‒1644.
24. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
25. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H., Chem. Asian J. 2017, 12, 293‒297.
26. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574‒1580.
27. Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; Liu, Y.; Withers, R. L. Nat. Mater. 2010, 9, 559‒564.
28. Jańczyk, A.; Wolnicka-Głubisz, A.; Urbanska, K.; Kisch, H.; Stochel, G.; Macyk, W. Free Radical Biol. Med. 2008, 44, 1120‒1130.
29. Lawrence, A.; Jones, C. M.; Wardman, P.; Burkitt, M. J. J. Biol. Chem. 2003, 278, 29410‒29419.
30. Yang, X.; Tang, H.; Xu, J.; Antonietti, M.; Shalom, M. ChemSusChem 2015, 8, 1350‒1358.
31. Abroushan, E.; Farhadi, S.; Zabardasti, A. RSC Adv. 2017, 7, 18293‒18304.
32. Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. J. Phys. Chem. C 2013, 117, 19346‒19352.
33. Yao, W.; Zhang, B.; Huang, C.; Ma, C.; Song, X.; Xu, Q. J. Mater. Chem. 2012, 22, 4050‒4055.
34. Yan, T.; Zhang, H.; Liu, Y.; Guan, W.; Long, J.; Li, W.; You, J., RSC Adv. 2014, 4, 37220-37230.