研究生: |
張峻豪 Chang, Chun Hao |
---|---|
論文名稱: |
歐幾里得《幾何原本》中世紀及文藝復興時期版本中的幾何圖形史 History of Geometrical Diagrams in Medieval and Renaissance European Editions of Euclidean Elements |
指導教授: |
琅元
Volkov, Alexei |
口試委員: |
洪萬生
Horng, Wann-Sheng 齋藤憲 Saito, Ken |
學位類別: |
碩士 Master |
系所名稱: |
人文社會學院 - 歷史研究所 History |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 208 |
中文關鍵詞: | 《幾何原本》 、幾何圖形 、希臘數學 、版本分析 |
外文關鍵詞: | Euclidean Elements, Geometrical diagram, Greek mathematics, Filiation analysis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Reviel Netz的學術著作The Shaping of Deduction in Greek Mathematics(1999)被學界認為是古希臘數學史學界最重要的著作之一。他發現古希臘數學圖形有一個明顯的特徵,亦即,圖形中總是會出現字母作為圖形上的標示。藉由這個特點,在面對無古代史料現存的困境下,Netz提出了一個以文字作為分析對象的古希臘數學圖形研究方法。然而,其他近年來的研究在比較幾個希臘數學著作的中世紀抄本以及現代版本中的圖形的過程中,發現即便是用於同一個數學命題的圖形也可能有極大的差異。而這樣的差異可能大大影響研究者對古代圖形的詮釋。因此,進一步檢視這些圖形的差異以及分析現存史料之間的關聯性便顯得更為重要。
在這篇論文中,筆者將從四個面向來討論歐幾里得《幾何原本》中數學圖形的流傳。首先,筆者將討論學界近來對於希臘數學圖形的詮釋,並分析其優缺點以及方法論上的問題。其次,筆者將進一步檢視現存史料中圖形的差異,並以數據化的方式呈現出這些差異,探討某些後世圖形上的特徵是否可能也存在於古代圖形之中。第三,筆者將探討文本分析以及生物譜系學的方法在版本分析上的應用,並以這些方法進行版本分析,嘗試分析圖形之間可能的關聯性及譜系圖。最後,筆者將以十六世紀的英國學者Robert Recorde為案例,藉由比較與其他文藝復興時期的數學圖形之差異,分析改變既有數學圖形的可能理由,以此進一步討論圖形是在哪些可能的因素或環境下被改變。
R. Netz’s monograph The Shaping of Deduction in Greek Mathematics (1999) has been often considered one of the most important recent works on the history of Greek mathematics. Netz provided a new methodology that he applied to his study on the use of lettered diagrams and on the language of ancient Greek mathematical treatises, which appeared to be efficient in the situation when the original diagrams were lacking. In turn, Saito and Sidoli (2012) compared manuscript diagrams and their modern counterparts and suggested, “The diagrams in modern editions … are often historically misleading and occasionally even mathematically misleading.” They showed that the difference between Medieval and modern diagrams is large, and if the researchers do not consult ancient editions, some information represented in ancient diagrams would not be noticed. Therefore, it is necessary to investigate the differences of diagram further, and to establish a method for studying the rela-tionships of the extant sources in order to identify the characteristics traceable to Antiquity.
In this thesis, I will discuss several aspects of the history of the diagrams in Euclidean Elements. (1) I will discuss the recent interpretations of Greek diagrams, especially of the diagrams of the Elements, in order to evaluate the current ap-proaches to ancient diagrams in the studies of the Elements. (2) I will present the differences between the extant editions of the Elements dated from the 9th to 20th century, and demonstrate how extant diagrams can be different from each other. (3) I will discuss the filiation of diagrams and build the relationship trees for the dia-grams of extant editions with the methods of textual analysis and phylogenetics, in order to identify the features of hypothetical common ancestors of extant diagrams. (4) I will study the reasons of changing diagrams in the works of Robert Recorde (c. 1512 – 1558). By comparing his new diagrams to the other contemporary ones, I will discuss the reason why the early modern editors attempted to revise the diagrams, and how exactly the diagrams were changed.
Acerbi, F. (2008). Euclid’s Pseudaria. Archive for History of Exact Sciences, 62(5), 511-551.
Archibald, R. C. (1950). The first translation of Euclid’s Elements into English and its source. The American Mathematical Monthly, 57(7), 443-452.
Barany, M. J. (2010). Translating Euclid’s diagrams into English, 1551–1571. In Heeffer, A., & Van Dyck, M. (Eds.), Philosophical Aspects of Symbolic Reason-ing in Early Modern Mathematics (pp. 125-163). London: College Publications.
Barany, M. J. (2012). “That small and unsensible shape”: Visual representations of the Euclidean point in sixteenth-century print. Spontaneous Generation, 6(1), 148-159.
Bello, A. L. (Ed.). (2003). Gerard of Cremona’s Translation of the Commentary of Al-Nayrizi on Book I of Euclid's Elements of Geometry: With an Introductory Account of the Twenty-two Early Extant Arabic Manuscripts of the Elements. Boston & Leiden: Brill.
Brentjes, S. (2001). Two comments on Euclid’s Elements? On the relation between the Arabic text attributed to al-Nairīzī and the Latin text ascribed to Anaritius. Centaurus, 43(1), 17-55.
Busard, H. L. L. (Ed.). (1983). The First Latin Translation of Euclid’s Elements Commonly Ascribed to Adelard of Bath. Toronto: Pontifical Institute of Medi-aeval Studies.
Busard, H. L. L. (Ed.). (1984). The Latin Translation of the Arabic Version of Eu-clid’s Elements Commonly Ascribed to Gerard of Cremona. Leiden: Brill.
Busard, H. L. L., & Folkerts, M. (1992). Robert of Chester’s Redaction of Euclid’s Elements, the so-called Adelard II Version, 2 vols. Basel: Birkhäuser Basel.
Clagett, M. (1953). A medieval Latin translation of a short Arabic tract on the Hy-perbola. Osiris, 44(1/2), 16-42.
Clagett, M. (1953). The medieval Latin translations from the Arabic of the Elements of Euclid, with special emphasis on the versions of Adelard of Bath. Isis, 44(1/2), 16-42.
Day, W. H. (1987). Computational complexity of inferring phylogenies from dissim-ilarity matrices. Bulletin of Mathematical Biology, 49(4), 461-467.
De Young, G. (2004a). The Latin translation of Euclid’s Elements attributed to Gerard of Cremona in relation to the Arabic transmission. Suhayl: International Journal for the History of the Exact and Natural Sciences in Islamic Civilisa-tion, 4, 311-383.
De Young, G. (2004b). Arabic into Latin: The case of Euclid’s Elements. Paper pre-sented at The 8th Maghrebian Colloquium on the History of Arab Mathematics, Tunis.
De Young, G. (2005). Diagrams in the Arabic Euclidean tradition: a preliminary as-sessment. Historia Mathematica, 32(2), 129-179.
De Young, G. (2009). Diagrams in ancient Egyptian geometry: Survey and assess-ment. Historia Mathematica, 36(4), 321-373.
De Young, G. (2012). Mathematical diagrams from manuscript to print: examples from the Arabic Euclidean transmission. Synthese, 186(1), 21-54.
Dearing, V. A. (1959). A Manual of Textual Analysis. University of California Press.
Dearing, V. A. (1974). Principles and Practice of Textual Analysis. University of California Press.
Decorps-Foulquier, M. (1999). Sur les figures du traité des coniques d’Apollonios de Pergé édité par Eutocius d’Ascalon. Revue d’histoire des mathématiques, 5(1), 55-76.
Egan, J. (2012). The Works of John Dee: Modernizations of his Main Mathematical Masterpieces. CreateSpace Independent Publishing Platform.
Engelfriet, P. M. (1998). Euclid in China: The Genesis of the First Chinese Transla-tion of Euclid’s Elements, Books I-VI (Jihe Yuanben, Beijing, 1607) and Its Re-ception Up to 1723. Leiden, Boston, & Köln: Brill.
Farris, J. S. (1983). The logical basis of phylogenetic analysis. In N. I. Platnick & V. A. Funk (Eds.), Advances in Cladistics 2 (pp. 7-36). New York: Columbia Uni-versity Press.
Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Biology, 27(4), 401-410.
Feyerabend, P. (1993). Against Method, 3rd ed. London & New York: Verso.
Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology, 20(4), 406–416.
Folkerts, M. (1989). Euclid in Medieval Europe. Winnipeg: The Benjamin Catalogue for History of Science.
Fowler, D. H. (1987). The Mathematics of Plato's Academy: a New Reconstruction. New York: Oxford University Press.
Franklin, J. (2000). Diagrammatic reasoning and modelling in the imagination: The secret weapons of the Scientific Revolution. In Freeland, G., & Corones, A. (Eds.), 1543 and All That Image and Word, Change and Continuity in the Pro-to-scientific Revolution (pp. 53-115). Dordrecht: Springer Netherlands.
Greg, W. W. (1927). The Calculus of Variations. Oxford: Clarendon Press.
Heath, T. L. (Ed.). (1896). Apollonius of Perga: Treatise on Conic Sections with In-troductions Including an Essay on Earlier History on the Subject. Cambridge: Cambridge University Press.
Heath, T. L. (Ed.). (1956). The Thirteen Books of Euclid’s Elements, Volume I (Books I - II). New York: Dover publications.
Heath, T. L. (Ed.). (1956). The Thirteen Books of Euclid’s Elements, Volume II (Books III - IX). New York: Dover publications.
Heath, T. L. (Ed.). (1956). The Thirteen Books of Euclid’s Elements, Volume III (Books X - XIII). New York: Dover publications.
Heiberg, J. L. & Stamatis, E. S. (Eds.). (1969–77). Euclidis Elementa, 5 vols. Leipzig: Teubner.
Heiberg, J. L. (1884). Die arabische Tradition der Elemente Euklids. Zeitschrift für Mathematik und Physik, 29, 1-22.
Hockey, T., et al. (Eds.). (2007). The Biographical Encyclopedia of Astronomers. New York: Springer.
Høyrup, J. (2005). Book review for Netz, R. (1999) The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press. Studia Logica: An International Journal for Symbolic Logic, 80(1), 143-147.
Johnson, F. R., & Larkey, S. V. (1935). Robert Recorde’s mathematical teaching and the anti-Aristotelian movement. The Huntington Library Bulletin, 7, 59-87.
Klamroth, M. (1881). Über den arabischen Euklid. Zeitschrift der Deutschen Morgenländischen Gesellschaft, 35(3), 270-326.
Knorr, W. R. (1975). The Evolution of the Euclidean Elements: A Study of the Theory of Incommensurable Magnitudes and its Significance for Early Greek Geometry. Dordrecht, Holland: D. Reidel Pub. Co.
Knorr, W. R. (1996). The wrong text of Euclid: On Heiberg’s text and its alternatives. Centaurus, 38(2‐3), 208-276.
Knorr, W. R. (2001). On Heiberg's Euclid. Science in Context, 14(1-2), 133-143.
Maas, P. (1958). Textual Criticism. Oxford: Clarendon Press.
Macbeth, D. (2010). Diagrammatic reasoning in Euclid’s Elements. Philosophical perspectives on mathematical practice, 12, 235-267.
Meli, D. B. (1989). Federico Commandino and his school. Studies in History and Philosophy of Science Part A, 20(3), 397-403.
Morrow, G. R. (1992). Proclus, a Commentary on the First Book of Euclid's Elements. Princeton University Press.
Mueller, I. (1969). Euclid’s Elements and the axiomatic method. The British Journal for the Philosophy of Science, 20(4), 289-309.
Mueller, I. (1981). Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Cambridge: MIT Press.
Netz, R. (1998). Greek mathematical diagrams: Their use and their meaning. For the Learning of Mathematics, 18(3), 33–39.
Netz, R. (1999). The Shaping of Deduction in Greek Mathematics: A Study in Cogni-tive History. Cambridge: Cambridge University Press.
Netz, R. (2004a). The Works of Archimedes: Volume 1, The Two Books On the Sphere and the Cylinder: Translation and Commentary (Vol. 1). Cambridge: Cambridge University Press.
Netz, R. (2004b). The limits of text in Greek mathematics. In K. Chemla (Ed.), His-tory of Science, History of Text (pp. 161-176). Springer Netherlands.
Netz, R., & Noel, W. (2007). The Archimedes Codex: Revealing the Secrets of the World's Greatest Palimpsest'. London: Weidenfeld & Nicolson.
Raynaud, D. (2014). Building the stemma codicum from geometric diagrams: A treatise on optics by Ibn al-Haytham as a test case. Archive for History of Exact Sciences, 68, 207–239.
Rommevaux, S., Djebbar, A., & Vitrac, B. (2001). Remarques sur l'histoire du texte des Éléments d’Euclide. Archive for History of Exact Sciences, 55(3), 221-295.
Rodin, A. (2014). Axiomatic Method and Category Theory. Berlin: Springer.
Roos, T., & Heikkilä, T. (2009). Evaluating methods for computer-assisted stemma-tology using artificial benchmark data sets. Literary and Linguistic Computing, 24(4), 417-433.
Rose, P. L. (1972). Commandino, John Dee, and the De Superficierum Divisionibus of Machometus Bagdedinus. Isis, 63(1), 88-93.
Rose, P. L. (1976). The Italian Renaissance of Mathematics: Studies on Humanists and Mathematicians from Petrarch to Galileo. Genève: Librairie Droz.
Rosenfeld, B. A. (2012). A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space. Springer Science & Business Media.
Roth, H. D. (1992). The Textual History of the Huai-Nan Tzu. Michigan: Assn for Asian Studies Inc.
Roth, H. D. (1993). Text and edition in early Chinese philosophical literature. Jour-nal of the American Oriental Society, 113(2), 214-227.
Saito, K. & Miura, N. (Trans.) (2008). Euclidis Opera Omnia, Volume 1. Tokyo: University of Tokyo Press. (斎藤憲, 三浦伸夫訳. (2008). 『エウクレイデス全集』第1巻. 東京: 東京大学出版会.)
Saito, K. (1998). Mathematical reconstructions out, textual studies in: 30 years in the historiography of Greek mathematics. Revue d’histoire des mathématiques, 4(1), 131-142.
Saito, K. (2006). A preliminary study in the critical assessment of diagrams in Greek mathematical works. SCIAMVS, 7, 81-144.
Saito, K. (2008). What is Euclid’s Elements. Tokyo: Iwanami Shoten. (斎藤憲. (2008). 『ユークリッド「原論」とは何か』. 東京: 岩波書店.)
Saito, K. (2009). Reading ancient Greek mathematics. In Robson, E. and Stedall, J. (Eds.), The Oxford Handbook of the History of Mathematics (pp. 801-826). New York: Oxford University Press.
Saito, K. (2011). The Diagrams of Book II and III of the Elements in Greek Manu-scripts. In K. Saito (Ed.), Diagrams in Greek Mathematical Texts (pp. 39-80).
Saito, K. (2012). Traditions of the diagram, tradition of the text: A case study. Syn-these: an International Journal for Epistemology, Methodology and Philosophy of Science, 186(1), 7-20.
Saito, K. (2013). The Greek manuscript diagrams of the Elements – Elements, Book VI. In K. Saito (Ed.), Reproduced Diagrams from Greek and Arabic manuscripts (pp. 71-98).
Saito, K. (Trans.) (2015). Euclidis Opera Omnia, Volume 2. Tokyo: University of Tokyo Press. (斎藤憲訳. (2015). 『エウクレイデス全集』第2巻. 東京: 東京大学出版会.)
Saito, K., & Sidoli, N. (2012). Diagrams and arguments in ancient Greek mathemat-ics: Lessons drawn from comparison of the manuscript diagrams with those in modern critical editions. History of Mathematical Proof in Ancient Traditions, 135-162.
Shin, S.-J. (2012). The forgotten individual: diagrammatic reasoning in mathematics. Synthese: an International Journal for Epistemology, Methodology and Philos-ophy of Science, 186(1), 149-168.
Sidoli, N. (2005). Book review for Netz, R. (1999) The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press. Educational Studies in Mathematics, 58(2), 277-282.
Sidoli, N. (2007). What we can learn from a diagram: The case of Aristarchus’s On The Sizes and Distances of the Sun and Moon. Annals of Science, 64(4), 525-547.
Sidoli, N. (2014). Research on ancient Greek mathematical sciences. In N. Sidoli & G. Van Brummelen (Eds.), From Alexandria, Through Baghdad: Surveys and Studies in the Ancient Greek and Medieval Islamic Mathematical Sciences in Honor of JL Berggren (pp. 25-50). Berlin: Springer.
Sober, E. (1994). Let’s razor Ockham's razor. In Sober, E. (Ed.), From a Biological Point of View: Essays in Evolutionary Philosophy (pp. 136-157), Cambridge: Cambridge University Press.
Thompson, P. M. (1979). The Shen Tzu Fragments. Oxford: Oxford University Press.
Vitrac, B. (2012). The Euclidean ideal of proof in the Elements and philological un-certainties of Heiberg’s edition of the text. In Chemla, K. (Ed.), History of Mathematical Proof in Ancient Traditions (pp. 69-134). Cambridge: Cambridge University Press.
West, M. L. (1973). Textual Criticism and Editorial Technique: Applicable to Greek and Latin Texts. Stuttgart: B. G. Teubner.
Williams, J. J. W. (2011). Robert Recorde: Tudor Polymath, Expositor and Practi-tioner of Computation. Springer Science & Business Media.
Zerlenga, O. (2016). Federico Commandino (1509–1575). In M. Cigola (Ed.), Dis-tinguished Figures in Descriptive Geometry and Its Applications for Mechanism Science (pp. 99-128), Switzerland: Springer International Publishing.