簡易檢索 / 詳目顯示

研究生: 陳佑杰
Chen, Yu-Chieh
論文名稱: 腦波訊號偵測之硬體演算法優化設計與實現
Design and Implementation of Hardware-efficient Algorithms for Brain Signal Detection
指導教授: 陳新
Chen, Hsin
口試委員: 鄭桂忠
Tang, Kea-Tiong
馬席彬
Ma, Hsi-Pin
趙昌博
Chao, Chang-Po
范育成
Fan, Yu-Cheng
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 99
中文關鍵詞: 類比轉時間轉換器時間數位轉換器乘法累加器小波轉換閉迴路腦內深層刺激
外文關鍵詞: Analog-to-time-converter, Time-to-digital-converter, multiply-accumulator, wavelet-transform, closed-loop-DBS
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多通道陣列之腦波細胞的神經訊號量測,提升了腦波分析時所需要的資訊量,但也同時增加了硬體實現的困難度。因此,突顯了於前端硬體電路中之腦波資料壓縮的重要性。神經細胞分類,為一種在時域特徵的資料壓縮架構,透過神經細胞分類,記錄不同神經細胞所觸發電壓訊號 (spike) 的時間與頻率,避免傳送大量的原始波型於後級。在頻率特徵的部份,則透過濾波器的設計,留下具有生理訊號意義的特徵,避免大量原始資料的處理。本論文以神經細胞分類系統為例,提出在時域特徵的硬體電路設計,簡化所需要的硬體資源。在頻率特徵方面,則以腦內深層閉迴路刺激為例,進行演算法的簡化與系統實現。

    時域特徵的實現,一般應用於神經科學領域的微電子系統,是先將微小的神經電壓訊號放大後,再將其放大後的類比電壓訊號轉換為數位訊號。因此在電壓轉換數位訊號時的訊雜比,將受限於電晶體操作的電壓動態範圍。類比轉時間轉換器 (Analog-to-time converter, ATC) 能避免受到電壓動態範圍的限制,透過電路的正回授機制,將類比電壓轉換為脈波的時間寬度訊號。針對ATC輸出之脈波時間訊號,則是透過時間數位轉換器 (Time-to-digital converters, TDC) 將脈波時間寬度轉換為數位訊號。有別於一般TDC的動態範圍不夠寬的缺點,本論文提出兩種TDC的架構皆可提供4096:1的高動態範圍: 雙刻度計數器 (Dual-scale counter, DSC) 可提供最少的晶片面積; 延遲線計數器 (Delay-line counter, DLC) 則可提供最少的晶片功耗。TDC所輸出的數位訊號,則使用二維乘法累加器 (Two-dimensional multiply-accumulator, 2D-MAC) 的乘加器進行後續的計算。此ATC已實現於標準的0.35微米半導體製程,可提供6位元之脈波寬度轉換為數位訊號的解析度。TDC與2D-MAC則是透過場域可編程邏輯閘陣列 (Field programmable gate array, FPGA) 進行實現。最後,此方法實際整合應用於神經訊號的分類功能,以進行功能展示與驗証。

    在頻率域方式的實現,有別於一般小波轉換 (Wavelet transform, WT) 於硬體實現方面,需使用多組不同頻率的濾波器,且濾波器之係數為符點數之缺點, 本論文以WT為基礎,提出 (Simplified discrete wavelet transform, Sim-DWT) 以解決使用多組濾波器與系數為符點數的缺點。 本論文以Sim-DWT演算法進行局部場電位 (local field potential, LFP) 神經訊號中的高電位震盪 (high-voltage spindles, HVSs) 特徵的偵測。以低階8位元的微處理器為實現平台,其時脈為8MHz,並佔用4資料點 (約32位元) 的資料暫存空間,其含接口(IO)的整體功耗約為6mW。Sim-DWT具備低硬體資源的特點,適合用於低階的微處理器或是實現於低功耗的專用集成電路 (Application specific integrated Circuit, ASIC) 晶片中。此系統已實測於動物實驗,並於Sim-DWT中,以不同母波函式 (Haar, DB4, Morlet) 分析其偵測HVS的準確率。分析結果可得知,依偵測HVS訊號特徵方面,使用DB4的母波函式可達到與電腦平台相當的準確率。未來,Sim-DWT可進一步整合至閉迴授之腦內深層電刺激微系統。


    Microelectrode arrays have been widely used to measure neural activity in vivo. However, it also increases the complexity of hardware design, because data compression becomes essential for efficient data transmission and closed-loop neuromodulation. In the time domain, spike sorting is needed to record a specific neuron's firing time and frequency information without analyzing a large number of data points. In the frequency domain, only the frequency bands of specific bio-markers are filtered out. In this thesis, the design of hardware-efficient algorithms for both time and frequency domains of data compression have been proposed.

    In the time-domain implementation, conventional neuroelectronic interfaces employ circuits in the voltage domain to amplify neural signals and convert the analog signals into digital data for further calculation. The signal-to-noise ratio and the dynamic range of the amplifier are restricted by the supply voltage. To alleviate this limitation, this thesis uses an analog-to-time converter (ATC) to convert analog local field potential (LFP) signals into a series of pulse-width modulated signals. The pulse signals are then converted into digital data by time-to-digital converters (TDCs). Customer designed TDCs are further proposed to extend the dynamic range to $4096:1$. The Dual-scale counter (DSC) minimizes area consumption, and the Delay-line counter (DLC) minimizes the power consumption. The two-dimensional multiply-accumulator (2D-MAC) for processing the data outputs from TDCs have also been proposed, and can separate spikes without calculating the product sum of the 2D-MAC. Finally, the implementation of the time domain classifier is realized in FPGA for sorting neuronal spikes.

    In the frequency-domain implementation, to detect high-voltage spindle (HVSs) in the LFP signals. An optimized discrete wavelet transform, called the Simplified discrete wavelet transform (Sim-DWT) algorithm, is proposed. The Sim-DWT algorithm has been implemented in a low-end, eight-bit micro-controller to extracting the features of HVSs with a frequency ranging from 5 to 15 Hz. Sim-DWT requires only four samples of 8-bit data in each calculating buffer (an operation window), and requires no multiplication. These features make Sim-DWT easy to implement in a low-end MCU or ASIC. The Sim-DWT algorithm realized in an eight-bit MCU consumes only 6-mW including IO ports. Finally, the ability of the Sim-DWT-base system is examined by detecting HVSs in LFP signals in rat experiments.

    Three types of mother wavelet functions: Haar, DB4, Morlet in typical, have been transformed as the cMW functions and compared. The experimental results point out that, by designing the cMW function appropriately in the Sim-DWT algorithm, HVSs can be detected reliably. The accuracy is comparable th that in PC simulation. Therefore the proposed Sim-DWT is suitable for implementation as a digital core in a microsystem for closed-loop, deep brain stimulation (DBS) in the future.

    Contents vii List of Figures xi List of Tables xix 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Chapter Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Data Analyzing and Classification on Biomedical Signal 7 2.1 Time-domain Data Compression . . . . . . . . . . . . . . . . . . 8 2.1.1 Entropy and Envelope detection . . . . . . . . . . . . . . 8 2.1.2 Skewness and Kurtosis . . . . . . . . . . . . . . . . . . . 9 2.2 Classification for Spike Sorting . . . . . . . . . . . . . . . . . . . 10 2.2.1 Principle components analysis (PCA) . . . . . . . . . . . 10 2.2.2 Support Vector Machines (SVMs) . . . . . . . . . . . . . 11 2.2.3 Continuous Restricted Boltzmann Machine (CRBM) . . 11 2.2.4 Hardware-based Spike Sorting Systems . . . . . . . . . . 12 2.3 Frequency-domain Data Compression . . . . . . . . . . . . . . . 15 2.3.1 Short-time Fourier transform (STFT) . . . . . . . . . . . . 15 2.3.2 Wavelet transform (WT) . . . . . . . . . . . . . . . . . . . 16 2.4 Hardware-based Closed-loop DBS System . . . . . . . . . . . . 17 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Time-domain Implementation - ATC, TDC and 2D-MAC 21 3.1 The Analog-to-time Converter (ATC) . . . . . . . . . . . . . . . . 21 3.2 Measurement Results of ATC . . . . . . . . . . . . . . . . . . . . 23 3.3 The Time-to-digital Converters (TDC) . . . . . . . . . . . . . . . 27 3.3.1 The Dual-scale Counter . . . . . . . . . . . . . . . . . . . 28 3.3.2 The Delay-line Counter . . . . . . . . . . . . . . . . . . . 29 3.4 The Design of 2D-MAC . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 Hardware Implementation of TDC . . . . . . . . . . . . . 35 3.5.2 Hardware Implementation of 2D-MAC . . . . . . . . . . 37 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 The Experimental Results of Time-domain Implementation for Classifying Biomedical Data 41 4.1 Measurement Results of TDC and 2D-MAC operator . . . . . . 41 4.1.1 Tradeoffs between Power and Area for the DLC Method 43 4.1.2 Comparison with the Standard FPGA Intellectual Property 43 4.2 Experiments with Real Biomedical Data . . . . . . . . . . . . . . 47 4.2.1 Simplified for CRBM Spike Sorting . . . . . . . . . . . . 48 4.2.2 Implementing the Spike-sorting Core . . . . . . . . . . . 50 4.2.3 Experimental result . . . . . . . . . . . . . . . . . . . . . 53 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Frequency-domain Implementation Based on SimplifiedWavelet Transform 57 5.1 Introduction of CWT and DWT . . . . . . . . . . . . . . . . . . . 58 5.2 Data Analyzing Using Wavelet Transform . . . . . . . . . . . . . 62 5.3 The Design of Sim-DWT . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1 Down-sampling . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.2 Hardware Implementation of cMW Functions . . . . . . 67 5.3.3 Simulation of cMW Functions . . . . . . . . . . . . . . . 68 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 Closed-loop experiments with Parkinsonian Rats in vivo 73 6.1 Hardware Implementation and Sim-DWT features . . . . . . . . 73 6.2 Sim-DWT features . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3 Accuracy of the Sim-DWT in Detecting HVSs . . . . . . . . . . 76 6.4 Closed-loop DBS in Vivo . . . . . . . . . . . . . . . . . . . . . . . 82 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7 Conclusion and Future work 87 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Bibliography 89

    [1] S. Wang, S. K. Garakoui, H. Chun, D. G. Salinas, W. Sijbers, J. Putzeys,E. Martens, J. Craninckx, N. Van Helleputte, and C. M. Lopez, “A compact quad-shank cmos neural probe with 5,120 addressable recording sites and 384 fully differential parallel channels,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1625–1634, 2019.

    [2] R. Shulyzki, K. Abdelhalim, A. Bagheri, M. T. Salam, C. M. Florez, J. L. P. Velazquez, P. L. Carlen, and R. Genov, “320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 1, pp. 34–49, 2015.

    [3] R. Chavarriaga, M. Uš´cumli´c, H. Zhang, Z. Khaliliardali, R. Aydarkhanov, S. Saeedi, L. Gheorghe, and J. d. R. Millán, “Decoding neural correlates of cognitive states to enhance driving experience,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 4, pp. 288–297, 2018.

    [4] L. Xia, A. Soltan, J. Luo, G. Chester, and P. Degenaar, “A rodent flash fpga control system for closed-loop optogenetic stimulation to suppress seizures,” in 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), 2018, pp. 1–4.

    [5] H.-C. Chang, Y.-D. Wu, and H. Chen, “An analog-to-time converter with positive feedback for amplifying miniature neural recordings,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE, 2011, pp. 86–89.

    [6] P. Brown, A. Oliviero, P. Mazzone, A. Insola, P. Tonali, and V. Di Lazzaro, “Dopamine dependency of oscillations between subthalamic nucleus and pallidum in parkinson’s disease,” Journal of Neuroscience, vol. 21, no. 3, pp. 1033–1038, 2001, cited By 561. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2. 0 0035115941&partnerID=40&md5=e2dbd0e20c78bf2afcab73239bdb8983

    [7] M. Arlotti, L. Rossi, M. Rosa, S. Marceglia, and A. Priori, “An external portable device for adaptive deep brain stimulation clinical research in advanced parkinson disease,” Medical Engineering and Physics, vol. 38, no. 5, pp. 498 – 505, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1350453316300017

    [8] A. Quiroga-Varela, J. Walters, E. Brazhnik, C. Marin, and J. Obeso,“What basal ganglia changes underlie the parkinsonian state? the significance of neuronal oscillatory activity,” Neurobiology of Disease, vol. 58, pp. 242 – 248, 2013. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0969996113001526

    [9] B. P. Oswal A1 and L. V, “Synchronized neural oscillations and the pathophysiology of parkinson disease,” Current opinion in neurology, vol. 26, no. 6, pp. 662–70, Dec 2013.

    [10] G. C. McConnell, R. Q. So, J. D. Hilliard, P. Lopomo, and W. M. Grill,“Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns,” Journal of Neuroscience, vol. 32, no. 45, pp. 15 657–15 668, 2012. [Online]. Available: http://www.jneurosci.org/content/32/45/15657

    [11] W. Meissner, A. Leblois, D. Hansel, B. Bioulac, C. E. Gross, A. Benazzouz, and T. Boraud, “Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations,” Brain, vol. 128, no. 10, pp. 2372–2382, 2005. [Online]. Available: +http: //dx.doi.org/10.1093/brain/awh616

    [12] A. Khalifa, J. Zhang, M. Leistner, and R. Etienne-Cummings, “A compact, low-power, fully analog implantable microstimulator,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 2435– 2438.

    [13] A. Kiourti, C. W. L. Lee, J. Chae, and J. L. Volakis, “A wireless fully passive neural recording device for unobtrusive neuropotential monitoring,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 1, pp. 131–137, 2016.

    [14] L. Wong, S. Hossain, A. Ta, J. Edvinsson, D. Rivas, and H. Naas, “A very low-power cmos mixed-signal ic for implantable pacemaker appli-cations,” Solid-State Circuits, IEEE Journal of, vol. 39, no. 12, pp. 2446 – 2456, dec. 2004.

    [15] J. Georgiou and C. Toumazou, “A 126-mw cochlear chip for a totally implantable system,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 2, pp. 430 – 443, feb. 2005.

    [16] P. Bhatti and K. Wise, “A 32-site 4-channel high-density electrode array for a cochlear prosthesis,” Solid-State Circuits, IEEE Journal of, vol. 41, no. 12, pp. 2965 –2973, 2006.

    [17] W. Liu, K. Vichienchom, M. Clements, S. DeMarco, C. Hughes, E. McGucken, M. Humayun, E. De Juan, J. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” Solid-State Circuits, IEEE Journal of, vol. 35, no. 10, pp. 1487 –1497, oct 2000.

    [18] M. Sivaprakasam, W. Liu, M. Humayun, and J. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 3, pp. 763 – 771, 2005.

    [19] A. Benabid, “Deep brain stimulation for Parkinson’s disease,” Current Opinion in Neurobiology, vol. 13, no. 6, pp. 696–706, 2003.

    [20] M. Jahanshahi, C. Ardouin, R. Brown, J. Rothwell, J. Obeso, A. Albanese, M. Rodriguez-Oroz, E. Moro, A. Benabid, P. Pollak, and P. Limousin- Dowsey, “The impact of deep brain stimulation on executive function in Parkinson’s disease,” Brain, vol. 123, no. Part 6, pp. 1142–1154, 2000.

    [21] J. Wang, C. Tang, and H. Chen, “An adaptable continuous restricted boltzmann machine in vlsi for fusing the sensory data of an electronic nose,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 4, pp. 961–974, April 2017.

    [22] G. Buzsáki and F. L. da Silva, “High frequency oscillations in the intact brain,” Progress in Neurobiology, vol. 98, no. 3, pp. 241 – 249, 2012, high Frequency Oscillations in Cognition and Epilepsy. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0301008212000305

    [23] C. Dejean, A. Nadjar, C. L. Moine, B. Bioulac, C. E. Gross, and T. Boraud, “Evolution of the dynamic properties of the cortex–basal ganglia network after dopaminergic depletion in rats,” Neurobiology of Disease, vol. 46, no. 2, pp. 402 – 413, 2012, microRNAs in Neuropsychiatric Disease. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0969996112000460

    [24] B. Schwerin and K. Paliwal, “Using stft real and imaginary parts of modulation signals for mmse-based speech enhancement,” Speech Commun., vol. 58, pp. 49–68, Mar. 2014. [Online]. Available: http://dx.doi.org/10.1016/j.specom.2013.11.001

    [25] C. A. Majmudar and B. I. Morshed, “Autonomous oa removal in real-time from single channel eeg data on a wearable device using a hybrid algebraic-wavelet algorithm,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 1, pp. 20:1–20:16, Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2983629

    [26] G. M. H. Lee, “Electroencephalogram approximate entropy influenced by both age and sleep,” Front. Neuroinform, Dec 2013.

    [27] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000, pMID: 10843903. [Online]. Available: https: //doi.org/10.1152/ajpheart.2000.278.6.H2039

    [28] R. P. Mudhiganti, “A comparative analysis of feature extraction techniques for eeg signals from alzheimer patients,” Electrical Engineering Theses, Apr. 2012.

    [29] A. M. Kamboh and A. J. Mason, “Computationally efficient neural feature extraction for spike sorting in implantable high-density recording systems,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 1–9, 2013.

    [30] P. Bhuvaneswari and J. S. Kumar, “Article: Support vector machine technique for eeg signals,” International Journal of Computer Applications, vol. 63, no. 13, pp. 1–5, February 2013, full text available.

    [31] P. Panavaranan and Y. Wongsawat, “Eeg-based pain estimation via fuzzy logic and polynomial kernel support vector machine,” in The 6th 2013 Biomedical Engineering International Conference, 2013, pp. 1–4.

    [32] I. Guler and E. D. Ubeyli, “Multiclass support vector machines for eeg-signals classification,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 2, pp. 117–126, March 2007.

    [33] A. Zainuddin, W. Mansor, K. Y. Lee, and Z. Mahmoodin, “Performance of support vector machine in classifying eeg signal of dyslexic children using rbf kernel,” 2018.

    [34] B. Richhariya and M. Tanveer, “Eeg signal classification using universum support vector machine,” Expert Systems with Applications, vol. 106, pp. 169–182, Sep. 2018, full text available.

    [35] Y. C.-H. Lee Chien-Ching, Chuang Chia-Chun, “Using a novel modular continuous restricted boltzmann machine to ssvep-based bcis for amyotrophic lateral sclerosis,” Microsystem Technologies, vol. 9, no. 4, pp. 645–657, 2019.

    [36] W. Yu, K. Kim, and S. Cho, “A 0.22 ps rms integrated noise 15 mhz bandwidth fourth-order time-to-digital converter using time-domain errorfeedback filter,” IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1251–1262, 2015.

    [37] N. U. Andersson and M. Vesterbacka, “A vernier time-to-digital converter with delay latch chain architecture,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 10, pp. 773–777, Oct 2014.

    [38] S. Tannirkulam Chandrasekaran, A. Jayaraj, M. Danesh, and A. Sanyal,“A highly digital second-order oversampling tdc,” IEEE Solid-State Circuits Letters, vol. 1, no. 5, pp. 114–117, 2018.

    [39] Z. Wang, L. Cao, Z. Zhang, X. Gong, Y. Sun, and H. Wang, “Short time fourier transformation and deep neural networks for motor imagery brain computer interface recognition,” Concurrency and Computation: Practice and Experience, vol. 30, no. 23, p. e4413, 2018, e4413 cpe.4413. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4413

    [40] A. Bhattacharyya and R. B. Pachori, “A multivariate approach for patient-specific eeg seizure detection using empirical wavelet transform,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 9, pp. 2003–2015, 2017.

    [41] A. J. Casson, “Hardware aware algorithm performance and the low power continuous wavelet transform,” in Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and
    Communication Technologies, ser. ISABEL ’11. New York, NY, USA: ACM, 2011, pp. 128:1–128:5. [Online]. Available: http://doi.acm.org/10. 1145/2093698.2093826

    [42] Y. Liu, W. Zhou, Q. Yuan, and S. Chen, “Automatic seizure detection using wavelet transform and svm in long-term intracranial eeg,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 6, pp. 749–755, 2012.

    [43] R. Perumal and H. Chen, “Performance analysis in a wavelet-based algorithm for automatic detection of high-voltage spindles in parkinson’s disease rat models,” in 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering: October 9-12, 2014, Tainan, Taiwan, Oct 2015, pp. 170–173.

    [44] C. Young, S. Liang, D. Chang, Y. Liao, F. Shaw, and C. Hsieh, “A portable wireless online closed-loop seizure controller in freely moving rats,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 2, pp. 513–521, 2011.

    [45] Y. Zheng, Z. Jiang, and A. P. et al., “Acute seizure control efficacy of multi-site closed-loop stimulation in a temporal lobe seizure model.” IEEE Trans Neural Syst Rehabil Eng., vol. 27, no. 3, pp. 419–428, 2019.

    [46] Y.-C. Chen, C.-C. Chang, R. Perumal, S.-R. Yeh, Y.-C. Chang, and H. Chen, “Optimization and implementation of wavelet-based algorithms for detecting high-voltage spindles in neuron signals,” ACM
    Trans. Embed. Comput. Syst., vol. 18, no. 5, July 2019. [Online]. Available: https://doi.org/10.1145/3329864

    [47] Y.-C. Chen, C.-T. Tang, H.-C. Wu, and H. Chen, “A compact multiplyaccumulate architecture for clustering pulse-width coded biomedical signals,” in 4th International Symposium on Bioelectronics and Bioinformatics, Oct 2015, pp. 252–257.

    [48] M. Rezvanyvardom and E. Farshidi, “A new triple-slope pipelined time to digital converter by stretching of time,” Journal of Circuits, Systems and Computers, vol. 24, no. 09, p. 1550135, 2015. [Online]. Available: https://doi.org/10.1142/S0218126615501352

    [49] V. Vigneron, H. Chen, Y. T. Chen, H. Y. Lai, and Y. Y. Chen, Engineering Applications of Neural Networks (Communication in Computer and Information Science). Springer-Verlag, August 2009, vol. 43, ch. Dictionary-based classification models. Applications for multichannel neural activity analysis, pp. 378–388.

    [50] V. Vigneron, H. Chen, and Y. Chen, “Dictionary-based classification models. applications for multichannel neural activity analysis,” International Conference on Engineering Applications of Neural Networks, vol. 43, no. 4, pp. 961–974, 2009.

    [51] Y. Chen, H. Chang, and H. Chen, “Two-dimensional multiplyaccumulator for classification of neural signals,” IEEE Access, vol. 6, pp. 19 714–19 725, 2018.

    [52] M. Vetterli and C. Herley, “Wavelets and filter banks: theory and design,” IEEE Transactions on Signal Processing, vol. 40, no. 9, pp. 2207–2232, Sep 1992.

    [53] C. Valens, “A really friendly guide to wavelets,” 1999.

    [54] Y. C. Chen, R. Perumal, C. H. Hwang, and H. Chen, “Hardware-based simplified discrete wavelet transform for detecting high-voltage spindles in neuron signals,” in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2017, pp. 1–5.

    [55] J. B. Tilbury, W. J. V. Eetvelt, J. M. Garibaldi, J. S. H. Curnsw, and E. C. Ifeachor, “Receiver operating characteristic analysis for intelligent medical systems-a new approach for finding confidence intervals,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 7, pp. 952–963, Jul 2000.

    [56] J. Egan, Signal Detection Theory and ROC-analysis, ser. Academic Press series in cognition and perception. Academic Press, 1975. [Online]. Available: https://books.google.com.tw/books?id=V40oAAAAYAAJ

    QR CODE