簡易檢索 / 詳目顯示

研究生: 郭至平
Chih-Ping Kuo
論文名稱: 應用卡氏網格於押出成型之三維CAE分析
Applying Cartesian Grid Method in the 3D CAE Analysis of Extrusion Process
指導教授: 張榮語
Rong Yeu Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 72
中文關鍵詞: 卡氏網格法共位體心式有限體積法押出成型魚尾形平板押出模具
外文關鍵詞: Cartesian Grid Method, Collocated Cell-Centered Finite Volume Method, Extrusion, Fishtail flat die
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是應用卡氏網格法(Cartesian Grid Method)與共位體心式有限體積法(Collocated Cell-Centered Finite Volume Method)來模擬高分子押出成型程序。一個自動化的卡氏網格產生程式已經完成,使用者只需輸入STL格式的幾何形狀與網格切割參數即可產生出卡氏網格。卡氏網格的層數越多,網格形狀越接近實際之幾何形狀。卡氏網格在幾何邊界所形成之鋸齒狀邊界對於模擬計算之收斂性有不良的影響,然而,在邊界平滑無鋸齒狀的情形下,卡氏網格層數越多,程式收斂情形越佳。本研究使用卡氏網格來模擬高分子在一個魚尾形平板押出模具中流動情形,求解其速度,壓力,溫度及黏度分佈,均得到合理之結果,證明卡氏網格法,一個快速且自動化的網格產生方式,在塑膠加工CAE分析方面確實有其應用價值。


    This research applies Cartesian Grid Method along with Collocated Cell-Centered Finite Volume Method to simulate polymer extrusion process. A automated Cartesian Grid generation program is developed. Users only have to input STL format geometry and mesh parameters to generate Cartesian Grid. The outline of the grid gets closer to actual geometry as the level of Cartesian Grid grows. The saw-toothed geometric boundary of Cartesian Grid has bad influences to the simulation convergence. However, under the circumstances that grid is smooth (i.e. without the saw-tooth boundary), the simulation converges better as the grid level increases. This study uses Cartesian Grid to simulate polymer flow in a fishtail flat extrusion die, reasonable velocity, pressure, temperature and viscosity profile is obtained. This research proves that Cartesian Grid method, a fast and fully automated mesh generation method, has practical application in the CAE analysis of polymer processes.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 X 第一章、緒論 1 1-1研究目的與動機 1 1-2押出成型簡介 2 1-3網格產生 5 1-3-1網格產生方法簡介 5 1-3-2卡式網格法簡介 6 第二章、文獻回顧 8 2-1卡式網格法 8 2-2數值計算方法 9 第三章、研究方法 12 3-1卡氏網格法 12 3-1-1卡氏網格法切割流程 12 3-1-2卡氏網格法資料結構 12 3-1-3判斷網格是否與幾何邊界相交之演算法 16 3-1-4內部/外部決定演算法 18 3-1-5網格細切之法則 19 3-2押出成形理論分析 22 3-2-1基本假設 22 3-2-2統御方程式 23 3-2-3邊界條件 25 3-3數值方法推導 26 3-3-1動量方程式的離散計算 26 3-3-2連續方程式的離散計算 28 3-3-3 SIMPLE去耦合疊代法 29 3-3-4能量方程式的離散計算 30 第四章、結果與討論 31 4-1卡氏網格切割實例 31 4-2不同層卡氏網格收斂性之比較 35 4-2-1 收斂性之定義 35 4-2-2 Lid Driven Cavity Flow 36 4-3卡氏網格鋸齒狀邊界對收斂性之影響 49 4-3-1 方管流動 - 鋸齒排列方向與流動方向垂直 49 4-3-2 方管流動 - 鋸齒排列方向與流動方向平行 53 4-4魚尾型平板押出模具之模擬 56 第五章、結論與展望 65 參考文獻 67 附錄 71 附錄A 卡氏網格法資料結構之記憶體使用 71 附錄B 魚尾形押出模具之設計圖 72

    1. E. A. Muccio, “Plastics Processing Technology”, ASM International, United States of America (1994).
    2. D. H. Morton-Jones, “Polymer Processing”, Chapman & Hall, London (1989).
    3. W. Michaeli, “Extrusion Dies for Plastics and Rubber”, Hanser Publishers, New York (1992).
    4. C. Rauwendaal, “Polymer Extrusion”, Hanser Publishers, New York (1990).
    5. J. H. Ferziger, M Peric, “Computational Methods for Fluid Dynamics”, Springer, New York (1996)
    6. M. J. Aftosmis, “Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows with Complex Geometries”, Lecture Notes for 28th Computational Fluid Dynamics Lecture Series, von Karman Institute for Fluid Dynamics (1997)
    7. Reyhner, T. A., “Cartesian Mesh Solution for Axisymmetric Transonic Potential Flow Around Inlets,” AIAA Journal, vol. 15, No. 5, 1977, pp. 624-631.
    8. Purvis, J., and Burkhalter, J., “Prediction of Critical Mach Number for Store Configurations,” AIAA Journal, vol. 17, No. 2, 1979.
    9. Wedan, B., and South, J., Jr., “A Method for Solving the Transonic Full-Potential Equation for General Configurations,” AIAA Paper 83-1889, 1983.
    10. Clarke, D., Salas, M., and Hassan, H., “Euler Calculations for Multi-Element Airfoils using Cartesian Grids,” AIAA Journal, vol. 24, 1986.
    11. Grossman, B., and Whitaker, D., “Supersonic Flow Computations using a Rectangular-Coordinate Finite-Volume Method,” AIAA Paper 86-0442, 1986.
    12. Gaffney, R., Hassan, H., and Salas, M., “Euler Calculations for Wings using Cartesian Grids,” AIAA Paper 87-0356, 1987.
    13. Choi, S. K., and Grossman, B., “A Flux-Vector Split, Finite-Volume Method for Euler’s Equations on Non-Mapped Grids,” AIAA Paper 88-0227, 1988.
    14. Samant, S. S., Bussoletti, J., Johnson, F., Burkhart, R., Everson, B., Melvin, R., Young, D., Erickson, L., Madson, M., “TRANAIR: A Computer Code for Transonic Analyses of Arbitrary Configurations,” AIAA Paper 87-0034, 1987.
    15. LeVeque, R. J., “Cartesian Grid Methods for Flow in Irregular Regions,” Numerical Methods for Fluid Dynamics III; Proceedings of the Conference, Oxford, England, Clarendon Press, 1988, pp. 375-382.
    16. Berger, M., and LeVeque, R., “An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries,” AIAA Paper 89-1930, 1989.
    17. Berger, M., and LeVeque, R., “Cartesian Meshes and Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” Proc. 3rd Intl. Conf. Hyperbolic Problems, Uppsala, Sweden, 1990.
    18. Berger, M., and LeVeque, R., “Stable Boundary Conditions for Cartesian Grid Calculations,” ICASE Report No. 90-37, 1990.
    19. Bell, J. B., Colella, P., and Welcome, M. L., “Conservative Front-Tracking for Inviscid Compressible Flow,” Proceedings of the AIAA 10th Computational Fluid Dynamics Conference, Honolulu, 1991.
    20. Bell, J. B., Berger, M. J., Saltzman, J. S., and Welcome, M. L., “Three Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws,” URCL-JC-108794, LLNL, December 1991.
    21. Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y., and Welcome, M. L., “Adaptive Cartesian Grid Methods for Representing Geometry in Inviscid Compressible Flow,” AIAA Paper 93-3385-CP, 1993.
    22. De Zeeuw, D., and Powell, K., “An Adaptively-Refined Cartesian Mesh Solver for the Euler Equations,” AIAA Paper 91-1542, 1991.
    23. Morinishi, K., “A Finite Difference Solution of the Euler Equations on Non-body-fitted Cartesian Grids,” Computers Fluids, Vol. 21, No. 3, pp.331-344, 1992.
    24. Quirk, J., “An Alternative to Unstructured Grids for Computing Gas Dynamic Flows Around Arbitrarily Complex Two-Dimensional Bodies,” ICASE Report 92-7, 1992.
    25. Quirk, J., “A Cartesian Grid Approach with Hierarchical Refinement for Compressible Flows,” NASA CR-194938 (ICASE Report 94-51), 1994.
    26. Melton, J., Enomoto, F., and Berger, M., “3D Automatic Cartesian Grid Generation for Euler Flows,” AIAA Paper 93-3386-CP, 1993.
    27. Tidd, D. M., Strash, D. J., Epstein, B., Luntz, A., Nachson, A., and Rubin, T., “Application of an Efficient 3-D Multigrid Euler Method (MGAERO) to Complete Aircraft Configurations,” AIAA Paper 91-3236, 1991.
    28. Karman, S. L. Jr., “SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD Code for Complex Geometries,” AIAA Paper 95-0343, 1995.
    29. Welterlen, T. J., and Karman, S. L. Jr., “Rapid Assessment of F-16 Store Trajectories Using Unstructured CFD,” AIAA Paper 95-0354, 1995.
    30. Melton, J. E., Berger, M. J., Aftosmis, M. J., and Wong, M. D., “3D Applications of a Cartesian Grid Euler Method,” AIAA Paper 95-0853, 1995.
    31. Melton, J. E., Berger, M. J., Aftosmis, M. J. And Wong, M. D., “Development and Application of a 3D Cartesian Grid Euler Method,” Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions, NASA CP-3291, 1995, pp. 225-249.
    32. Karman, S. L. Jr., “Unstructured Cartesian/Prismatic Grid Generation for Complex Geometries,” Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions, NASA CP-3291, 1995, pp. 251-270.
    33. W. F. Ames, “Numerical Methods for Partial Differential Equations”, Academic Press, New York (1977).
    34. O. C. Zienkiewicz, and R. L. Taylor, “The Finite Element Method”, McGRAW-Hill (1989).
    35. R. Y. Chang, and W. H. Yang, “Numerical Simulation of Mold Filling in Injection Molding Using a Three-Dimensional Finite Volume Approach”, submitted to Int. J. Numer. Methods Fluids (2000).
    36. C. M. Rhie and W. L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, 1525 (1983).
    37. Jinn-Liang Liu, Ing-Jer Lin, Minn-Zhih Shih, Ren-Chuen Chen, Mao-Chung Hsieh, “Object-oriented programming of adaptive finite element and finite volume methoed”, Applied Numerical Mathematics, 21, 439-467, (1996).
    38. O’Rourke, J. “Computational Geometry in C”, Cambridge University Press, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE