研究生: |
許永政 |
---|---|
論文名稱: |
加速器引發中子產率與物質活化之評估技術研究 Accelerator Induced Neutron Yields and Material Activation |
指導教授: | 許榮鈞 |
口試委員: |
江祥輝
薛燕婉 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 加速器 、中子產生 、物質活化 、蒙地卡羅 |
外文關鍵詞: | Accelerators, neutron yield, activation, Monte Carlo |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來國內加速器的應用蓬勃發展,高能加速器運轉時不可避免的會產生物質活化及其相關輻射防護問題,這些問題以前國內較少獨立探討及深入研究,為了因應國內越來越多的大型加速器應用,瞭解並建立正確的評估能力已是相當重要的議題。
本研究首先利用一系列有相對可靠實驗數據支持的活化案例,盡可能採用不同計算程式與不同理論模型,以有系統的方式驗證蒙地卡羅遷移程式用在計算中子產生與物質活化的模擬能力,並以驗證過之模型建立四種射束(30 MeV質子、3 GeV電子、235 MeV質子、400 MeV/A碳離子)與不同靶材作用產生中子與物質活化情形的評估模式。本研究以有系統地分析射束-靶體(銅、不銹鋼、組織)組合特性,嘗試建立合理簡化的關係,並連結加速器組件活化程度與眾多因子間的影響程度,期望能做為建置高能加速器時屏蔽設計之參考。
除此之外本研究選定日本京都大學CBNS設施屏蔽做為實際分析案例,在針對中子產生來源的Be(p,xn)反應與文獻結果驗證後,利用MCNPX與FLUKA計算CBNS與清華大學設計之濾屏出口中子束特性,檢驗兩種程式計算中子射源項之結果。最後本研究模擬兩種不同濾屏設計在CBNS設施幾何環境下運轉時的劑量分布情形,並對於屏蔽效果不足之區域提出改善方案。
Agosteo S. Radiation protection constraints for use of proton and ion accelerators in medicine. Radiation protection dosimetry 137: 167-186; 2009.
Agosteo S, Nakamura T, Silari M, Zajacova Z. Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets. Nuclear Instruments and Methods in Physics Research Section B 217: 221-236; 2004.
Ballarini F, Battistoni G, Cerutti F, Empl A, Fassò A, Ferrari A, Gadioli E, Garzelli MV, Ottolenghi A, Pinsky LS, Ranft J, Roesler S, Sala PR, Smirnov G. Nuclear models in FLUKA: Present capabilities, open problems, and future improvements. International Conference on Nuclear Data for Science and Technology; 2004.
Bock RK, Vasilescu A. The particle detector briefbook. Springer; 1998.
Brugger M, Ferrari A, Roesler S, Ulrici L. Validation of the FLUKA Monte Carlo code for predicting induced radioactivity at high-energy accelerators. Nuclear Instruments and Methods in Physics Research Section A 562: 814-818; 2006.
Brugger M, Khater H, Mayer S, Prinz A, Roesler S, Ulrici L, Vincke H. Benchmark studies of induced radioactivity produced in LHC materials, part I: specific activities. Radiation protection dosimetry 116: 6-11; 2005.
Brugger M, Khater H, Mayer S, Prinz A, Roesler S, Ulrici L, Vincke H. Benchmark studies of induced radioactivity produced in LHC materials, part II: Remanent dose rates. Radiation protection dosimetry 116: 12-15; 2005.
Chen CC. Personal Communication. 2013.
Cossairt JD. Radiation physics for personnel and environmental protection. Fermi National Accelerator Laboratory; 2005.
Daum E. Investigation of ligh ion induced activation cross sections in iron. NEA-INDC(GER) 043: 4; 1997.
EXFOR. Experimental Nuclear Reaction Data [online]. Available at: http://www-nds.iaea.org/exfor/.
Fasso A, Ferrari A, Sala P. Total giant resonance photonuclear cross sections for light nuclei: a database for the FLUKA Monte Carlo transport code. Proc 3rd Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities: 61; 1997.
Fasso A, Ferrari A, Sala PR. Photonuclear reactions in FLUKA: Cross sections and interaction models. In: RC Haight, MB Chadwick, T Kawano, P Talous eds. International Conference on Nuclear Data for Science and Technology, Pts 1 and 2. Melville: Amer Inst Physics; 2005; 1303-1306.
Fasso A, Silari M, Ulrici L. Predicting Induced Radioactivity at High Energy Accelerators. SLAC-PUB-8215; 1999.
Ferrari A, Sala P, Fasso A, Ranft J. FLUKA: a multi-particle transport code, CERN 2005-10. INFN/TC_05/ll, SLACR—773; 2005.
Gunzert-Marx K, Iwase H, Schardt D, Simon R. Secondary beam fragments produced by 200 MeV u− 1 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics 10: 075003; 2008.
Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with C-12 therapy beams. Radiation protection dosimetry 122: 485-487; 2006.
Koning AJ, Rochman D. TENDL-2009: "TALYS-based Evaluated Nuclear Data Library" [online]. Available at: http://www.talys.eu/tendl-2009/.
Kosako T, Nakamura T. Air activation by an electron synchrotron. Health physics 43: 3-12; 1982.
Lee HS, Ban S, Sanami T, Takahashi K, Sato T, Shin K, Chung C. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets. Radiation protection dosimetry 116: 653-657; 2005.
Mashnik SG. Overview and Validation of the CEM and LAQGSM Event Generators for MCNP6, MCNPX, and MARS15. arXiv preprint arXiv:08121820; 2008.
Meier MM, Goulding CA, Morgan GL, Ullmann JL. Neutron yields from stopping-length and near-stopping-length targets for 256-MeV protons. Nucl Sci Eng 104: 339-363; 1990.
Mills SJ, Steyn GF, Nortier FM. Experimental and theoretical excitation-functions of radionuclides produced in proton-bombardment of copper up to 200 MeV. Appl Radiat Isot 43: 1019-1030; 1992.
Nakamura T, Fujii M, Shin K. Neutron-production from thick targets of carbon, iron, copper, and lead by 30-MeV and 52-MeV protons. Nucl Sci Eng 83: 444-458; 1983.
NCRP. Radiation protection for particle accelerator facilities : recommendations of the National Council on Radiation Protection and Measurements. Bethesda, Md. : National Council on Radiation Protection & Measurements; 2003.
NSRL. Bragg Peak Measurements at NSRL [online]. Available at: http://www.bnl.gov/medical/NASA/CAD/Bragg/Bragg.asp.
NSRRC. 台灣光子源(TPS)輻射安全分析報告. 2010.
Pearlstein S. ENDF/HE-VI [online]. Available at: https://www-nds.iaea.org/exfor/endf.htm. Accessed June 29.
Pelowitz DB. MCNPX user’s manual version 2.7.0. Los Alamos National Laboratory; 2011.
PTCOG. Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. 2010.
Roesler S. Personal Communication. 2008.
Satoh D, Kurosawa T, Sato T, Endo A, Takada M, Iwase H, Nakamura T, Niita K. Reevaluation of secondary neutron spectra from thick targets upon heavy-ion bombardment. Nuclear Instruments & Methods in Physics Research Section A 583: 507-515; 2007.
Sheu R. Personal Communication. 2010.
Strasik I, Mustafin E, Seidl T, Pavlovic M. Experimental study and simulation of the residual activity induced by high-energy argon ions in copper. Nuclear Instruments and Methods in Physics Research Section B 268: 573-580; 2010.
Suzuki M, Tanaka H, Sakurai Y, Kashino G, Yong L, Masunaga S, Kinashi Y, Mitsumoto T, Yajima S, Tsutsui H, Sato T, Maruhashi A, Ono K. Impact of accelerator-based boron neutron capture therapy (AB-BNCT) on the treatment of multiple liver tumors and malignant pleural mesothelioma. Radiother Oncol 92: 89-95; 2009.
Swanson WP. Radiological safety aspects of the operation of electron linear accelerators. IAEA Vienna; 1979.
Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, Liu Y, Mitsumoto T, Yajima S, Tsutsui H, Maruhashi A, Ono K. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 267: 1970-1977; 2009.
Ulrici L, Magistris M. Radioactive waste management and decommissioning of accelerator facilities. Radiation protection dosimetry 137: 138-148; 2009.
Waterman F, Kuchnir F, Skaggs L, Kouzes R, Moore W. Neutron spectra from 35 and 46 MeV protons, 16 and 28 MeV deuterons, and 44 MeV 3He ions on thick beryllium. Medical physics 6: 432-435; 1979.
Yashima H, Uwamino Y, Iwase H, Sugita H, Nakamura T, Ito S, Fukumura A. Cross sections for the production of residual nuclides by high-energy heavy ions. Nuclear Instruments and Methods in Physics Research Section B 226: 243-263; 2004.
楊昇. 加速器型硼中子捕獲治療超熱中子束之濾屏匯聚設計及假體劑量分析. 國立清華大學碩士論文; 2014.