簡易檢索 / 詳目顯示

研究生: 湯偉鉦
Tang, Wei-Cheng
論文名稱: 非氟疏水劑開發及其在製備水性奈米溶膠凝膠疏水塗料之探討
Development of perfluorocarbon-free water-repellent agents and their use in the water-based nano sol-gel water-repellent coating materials
指導教授: 朱一民
Chu, I-Ming
陳信龍
Chen, Hsin-Lung
口試委員: 劉大佼
Liu, Ta-Jo
葉瑞銘
Yeh, Jui-Ming
陳俊太
Chen, Jiun-Tai
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 非氟疏水溶膠凝膠塗料奈米疏狀自分層
外文關鍵詞: non-fluoro, water-repelling, sol-gel, coating, nano-brush, self-stratifying
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全氟烷基化合物(PFCs)廣泛用於疏水塗料中,但是由於它們的致癌性和對環境的有害影響而引起ZDHC綠色組織關注並禁用;本研究主要使用fumed silica和n-Octyltriethoxysilane作為原料,透過溶膠-凝膠(sol-gel)化學合成方法,製備了新潁的水性非氟nano-brush疏水劑,搭配線性黏彈區域(LVR)分析和不對稱流場場流分析(AF4),證明了nano-brush非氟疏水劑和市售的水性樹脂之間的交互作用力可最小化,達到水性塗料中自分層的特性,並且利用SEM、TEM分析證明了塗膜自分層微結構;此外,本研究利用封閉型異氰酸酯(blocked-isocyanate)交聯設計,提升了nano-brush非氟疏水塗料的耐磨耗性能,並利用拉曼光譜(Raman)、近緣X光吸收細微結構光譜(NEXAFS)等分析了交聯化學反應。具體研究結果發現nano-brush非氟疏水劑與外乳化的丙烯酸基樹脂,較能表現出優異的相容性和自分層能力,當nano-brush非氟疏水劑以7%含量摻入時,可達到104.3°的水接觸角,在熱塑性聚氨酯(TPU)上其他性能測試顯示,最終配方具有優異的附著性(5B, 100%),並且在TPU塗佈後水接觸角從80.1°顯著增加至103.8°,表面污泥污染附著面積從48%降至1%,此外,在經過1000次耐刷洗與500次耐磨耗測試後,性能維持不變。本研究的發現證明了所合成的nano-brush非氟奈米疏水劑,不但具有水性、非氟環保特性,也能滿足未來商業需求的水性疏水防污塗料需求。


    While perfluoroalkyl chemicals (PFCs), also known as C8s, are used extensively in textile repellent coatings, concerns have arisen for their carcinogenicity and hazardous effects on the environment. In this study, a novel water-based, non-fluoro, and nano-brush textile repelling agent was prepared by conventional sol-gel chemistry using amorphous fumed silica and n-Octyltriethoxysilane as starting materials. Minimal interaction between the designed repelling agent and marketed water-based resins was confirmed using linear viscosity region (LVR) analysis and asymmetric-flow field-flow fractionation (AF4), suggesting the self-stratification potential of the repelling agent. The SEM and TEM were used to observe the morphology and chemical composition of coatings prepared from nano-brush repelling agents. More specifically, the repelling agent exhibited excellent compatibility and self-stratifying ability with a force-emulsified acrylic-based resin, affording a water contact angle of 104.3° when incorporated at 7% solid content. Furthermore, this study introduced the blocked-isocyanate functional group to nano-brush repelling agents to enhance the wear resistance of nano-brush non-fluoro coating. Also, we utilized the Raman spectroscopy (Raman) and near edge X-ray absorption fine structure (NEXAFS) to analyze the crosslinking chemistry. The performance tests carried out on thermoplastic polyurethane (TPU) revealed excellent adhesion (100/100) of a final formulation, and significant increase in water contact angle from 80.1° to 103.8° after treatment. In addition, the fouling area after removal of a submerged sample from a mixture of slurry, polymer, and oil decreased from 48% to 1% when the repelling agent was added. Moreover, the sludge-fouling property remained unchanged after 1000 cycles of wet abrasion and after 500 cycles of Taber abrasion tests. These findings demonstrate the potential of the described non-fluoro, nano-brush repelling agent as an environmentally-safe alternative for use with commercial resins, in turn realizing a fully water-based hydrophobic coating.

    摘要 誌謝 目錄 第一章 研究動機與目的...............................................1 第二章 基礎研究與文獻回顧............................................3 2-1水性、非氟塗料的技術發展需求......................................3 2-1-1水性塗料技術佔比將逐漸擴大......................................3 2-1-2水性疏水防污塗料技術具有瓶頸....................................4 2-1-3非氟疏水防污塗料將逐漸成為趨勢..................................5 2-1-4現有疏水劑只能用在多孔基材但平坦基材需求大 ........................7 2-2史托伯法(Stöber Process)與溶膠-凝膠法(Sol-gel)無機材料合成技術.....9 2-2-1 Stöber Process............................................9 2-2-2 Sol-gel無機材料化學合成機制..................................12 2-2-3 Sol-gel原料篩選與塗料製備....................................13 2-2-4塗料應用之特殊sol-gel單體.....................................17 2-3 非氟疏水防污原理..............................................22 2-3-1蓮花效應(Lotus effect)......................................22 2-3-2接觸角與滑落角...............................................23 2-3-3非氟低表面能分子設計理論.......................................26 2-4自分層疏水塗料設計與分析技術......................................28 2-4-1控制分子交互作用達到自分層機制..................................28 2-4-2封閉型異氰酸酯(blocked-isocyanate)分子設計.....................30 2-4-3拉曼(Raman)及近緣X光吸收細微結構光譜術(NEXAFS)..................31 2-4-4以X-ray reflectivity分析自分層後奈米粒子分布...................33 2-4-5水相中分子交互作用量化分析理論..................................35 第三章 研究構想與實驗用品...........................................36 3-1水性非氟疏水自分層塗料研究構想....................................36 3-1-1 Nano-brush結構非氟水性疏水劑.................................36 3-1-2 Blocked-isocyanate (Blocked-NCO)改質nano-brush非氟水性疏水劑.37 3-2 實驗部份.....................................................39 3-2-1藥品與原物料.................................................39 3-2-2實驗設備、儀器設備............................................39 第四章 實驗方法與步驟..............................................41 4-1疏水劑合成與塗料配方實驗步驟......................................41 4-1-1 NF-C8水性非氟、F-C8水性含氟nano-brush奈米疏水劑合成.............41 4-1-2 NF-C8-tbnco Blocked-NCO改質水性非氟疏水劑....................42 4-1-3 水性疏水防污自分層塗料配方....................................44 4-2分析方法與實驗步驟..............................................45 4-2-1水接觸角測試方法(參考JIS R3257靜滴法)..........................45 4-2-2不對稱流場場流分析水性自分層塗料中疏水劑與樹脂分子間作用力..........46 4-2-3耐刷洗測試方法(參考CNS 10757).................................48 4-2-4防污測試方法.................................................49 4-2-5百格測試(參考ASTM D3359-17):................................50 4-2-6氟含量測試方法...............................................50 4-2-7耐磨耗測試...................................................50 第五章 結果與討論..................................................51 5-1 Nano-brush水性非氟疏水劑結構分析................................51 5-2 不同界面活性劑分散之水性非氟nano-brush奈米疏水劑評估...............57 5-3 Nano-brush水性非氟疏水劑有機光譜分析............................58 5-4本研究合成nano-brush含氟疏水劑有機光譜分析........................61 5-5 市售疏水劑及本研究合成nano-brush疏水劑性能比較....................63 5-6 自乳化與外乳化樹脂對於水性疏水塗料自分層影響.......................65 5-7 以流變儀分析自乳化系統與外乳化系統分子交互作用差異..................67 5-8 以3D-DLS分析自乳化系統與外乳化系統分子交互作用差異.................69 5-9疏水劑含量對於水性自分層防污塗料特性影響...........................71 5-10 LVR分析水性自分層塗料中疏水劑與樹脂分子間作用力...................73 5-11 不對稱流場場流分析水性疏水塗料中疏水劑與樹脂分子交互作用............76 5-12以電子顯微鏡進行自分層塗膜微結構分析..............................83 5-13水性非氟防污塗料防污性與耐久性測試...............................88 5-14 Blocked-NCO改質Nano-brush水性非氟疏水劑.......................89 5-15 利用拉曼光譜分析Blocked-NCO silane溫度效應.....................92 5-16 NEXAFS光譜分析Blocked-NCO高溫開環再交聯.......................94 5-17 AFM奈米刮痕測試Blocked-NCO改質後塗膜耐刮性.....................95 5-18 Blocked-NCO 疏水劑對於耐刷洗與耐磨耗性之影響....................96 第六章 結論與展望.................................................101 參考文獻........................................................103 附錄....................... .................................106

    [1]ZDHC PROGRAMME, "Joint Roadmap", Version 2. 2013
    [2]ZDHC P05 Project Team, " Durable Water and Soil Repellent Chemistry in the Textile Industry – A Research Report", Version 1. 2012
    [3]McDonald et al., Science 2018, 359, 760
    [4]Xu, L.; Wang, L.; Shen, Y.; Ding, Y.; Cai, Z. Fibers Polym. 2015, 16, 1082.
    [5]Colleoni, C.; Guido, E.; Migani, V.; Rosace, G. J. Ind. Text. 2015, 44, 815.
    [6]Chu, L.; Daniels, M. W.; Francis, L. F. Chem. Mater. 1997, 9, 2577.
    [7]Ma Y.; Zhu D.; Si Y.; Sun G. J. Appl. Polym. Sci. 2018, 135, 46396
    [8]Wei D.; Dong C.; Chen Z.; Liu J.; Li Q.; Lu Z. J. Appl. Polym. Sci. 2019, 136, 47820
    [9]Pan, Y.; Liu, Y.; Cheng, Q.; Celikbag, Y.; Via, B. K.; Wang, X.; Sun, R. Eur. J. Wood Wood Prod. 2016, 74, 763.
    [10]Atav, R.; Bari, B. AATCC J. Res. 2016, 3, 16.
    [11]Holmquist, H.; Schellenberger, S.; Veen, I. V. D.; Peters, G. M. Leonards, P. E. G.; Cousins, I. T. Environ. Int. 2016, 91, 251.
    [12]Wang, Z.; Zuilhof, H. Langmuir 2016, 32, 6310.
    [13]Rengasamy, S.; Mannari V. J. Appl. Polym. Sci. 2013, 130, 3874.
    [14]Chen, K. Y.; Kuo, J. F. Macromol. Chem. Phys. 2000, 201, 2676.
    [15]Wang, L. F. Eur. Polym. J. 2005, 41, 293.
    [16]Shin, M.; Lee Y.; Rahman, M.; Kim H. Polymer. 2013, 54, 4873.
    [17]Yang W.; Du X.; Du Z.; Wang H.; Cheng X. J. Appl. Polym. Sci. 2019, 136, 47167.
    [18]Liu, S.; Zhu, G. Eur. Polym. J. 2007, 43, 3904.
    [19]Tanaka, H.; Suzuki, Y.; Yoshino, F. Colloids Surf. Physicochem. Eng. Asp. 1999, 153, 597.
    [20]Lei H.; Xiong M.; Xiao J.; Zheng L.; Zhuang Q. Prog. Org. Coat. 2018, 124, 158
    [21]Naderizadeh S.; Athanassiou A.; Bayer I. S. J. Colloid Interface Sci. 2018, 519, 285
    [22]Kolbe, G., Ph.D. thesis, 1956, Jena, Germany
    [23]Stöber, W.; Fink, A.; Bohn, E. "Controlled growth of monodisperse silica spheres in the micron size range". J. Colloid Interface Sci. 1968, 26 (1), 62
    [24]https://en.wikipedia.org/wiki/St%C3%B6ber_process
    [25]Boday, D. J.; Wertz, J. T.; Kuczynski, J. P. Nanomaterials, Polymers and Devices 2015, John Wiley & Sons, 121
    [26]Berg, J. C. An Introduction to Interfaces and Colloids. 2009, World Scientific Publishing, 367, 452
    [27]Quignard, S.; Masse, S.; Coradin, T. Intracellular Delivery 2011, Springer, 333
    [28]Ju, H. X.; Zhang, X. J.; Wang, J. NanoBiosensing 2011, Springer, 305
    [29]Giraldo, L. F.; López, B. L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M. Macromol. Symp. 2007, 258 (1), 129
    [30]Pinnavaia, T. J.; Sayari, A.; Jaroniec, M. Nanoporous Materials II. 2000, Elsevier, 747
    [31]Qiu, B.C.; Xing, M. Y.; Zhang, J. L. J. Mater. Chem. 2015, A. 3 (24): 12820
    [32]Steiner, S. "Silica Aerogel (TEOS, Base-Catalyzed)". Aerogel.org. 2016
    [33]Jet Propulsion Laboratory, "Aerogel", NASA Stardust mission. 2016
    [34]Aldrich Chemical Co., Inc., "Deposition of Ceramic and Hybrid Materials", Material Matters. 2006, 3(1)
    [35]Haas, K. H.; Wolter, H. Curr. Opin. Solid State Mater. Sci. 1999, 4 (6), 571
    [36]Arkles, Barry. “Silanes and surfaces hydrophobicity, hydrophilic and coupling agents“, Gelest, Inc. Technical paper.
    [37]Wang, D.; Bierwagen, G. R., Prog. Org. Coat. 2009, 64 (4), 327
    [38]Byrne, C. M.; Kumar, A. N.; Lejeune, A. "Epoxysilane oligomer for protective coatings", Momentive Performance Materials Inc. 2010 Technical paper of CoatOSil® MP 200.
    [39]Evonik Industries, "A New Water-Borne Inorganic Resin That Cures at Low Temperature", Dynasylan® SIVO 160.
    [40]Lotus effect. http://en.wikipedia.org/wiki/Lotus_effect.
    [41]Dodiuk, H.; Rios, P.F.; Dotan, A.; Kenig, S. Polym. Adv. Technol. 2007, 18(9), 746
    [42]Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Langmuir 2000, 16(13), 5754
    [43]Zhang, X.; Kono, H.; Liu, Z. et al. Chem. Commun. 2007, 46, 4949
    [44]Nakajima, A. J. Ceram. Soc. Jpn. 2004, 112(1310), 533
    [45]Nakajima, A. NPG Asia Mater. 2011, 3, 49
    [46]Shafrin, E. G.; Zisman, W. A. J. Phys. Chem. 1960, 64 (5), 519
    [47]Sohn, E. H.; Ahn, J.; Kim, B. G.; Lee, J. C. Langmuir, 2011, 27(5), 1811
    [48]Verkholantsev, V.V. Pigment & Resin Technology, 2003, 32 (5), 300
    [49]Liang, J.; He, L.; Dong, X.; Zhou, T. J. Colloid Interface Sci. 2012, 369, 435
    [50]Thomas, R. R.; Lloyd, K. G.; Stika, K. M.; Stephans, L. E.; Magallanes, G. S.; Dimonie, V. L.; Sudol, E. D.; El-Aasser, M. S. Macromolecules 2000, 33, 8828
    [51]"Waterborne and Solvent Based Surface Coating Resins and their Applications: Polyurethanes", John Wiley and Sons, 1928, ISBN 0-471-97886-8
    [52]Raman, C.V.K., et al., Nature. 1928, 121 (3048), 501
    [53]Stöhr, J., "NEXAFS Spectroscopy", Springer-Verlag. 1992
    [54]Roe, R. J., “Methods of X-ray and Neutron Scattering in Polymer Science“, Oxford. 2000, New York.
    [55]Tolan, M. "X-ray Scattering from Soft-Matter Thin Film: Material Science and Basic Research", Springer. 1999
    [56]Singh, A. and Mukherjee, M., PHYSICAL REVIEW. 2004, E 70, 051608
    [57]Nieman, S. H. "Instrumental Analysis", Saunders College Publishing, 1997, New York.
    [58]Hong, L. Y.; Cho, Y. S.; and Kim, D. P. J. Ind. Eng. Chem., 2005, 11(2), 2275
    [59]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G.C. J. Phys. Chem. B. 2003, 107, 668.
    [60]Williford, J. M.; Santos, J. L.; Shyam, R.; Mao, H. Q. Biomater Sci. 2015, 3, 894.
    [61]Martı´n, L.; Osso´, J. O.; Ricart, S.; Roig, A.; Garcı´ O.; Sastred, R. ‎J. Mater. Chem. 2008, 18, 207
    [62]Reich, H. J. Fluorine NMR Data. https://www.chem.wisc.edu/areas/reich/nmr/11-f-data.htm
    [63]Ren, J.; Silva, A. S.; Krishnamoorti, R. Macromolecules. 2000, 33, 3739.
    [64]Aranguren, M. I.; Mora, E.; DeGroot Jr., J. V.; Macosko, C. W. J. Rheol. 1992, 36, 1165

    QR CODE