研究生: |
許斐華 |
---|---|
論文名稱: |
Crystallization Behavior of PS-PLLA Block Copolymers from Strong to Weak Segregation |
指導教授: | 何榮銘 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 結晶性團聯高分子 、聚苯乙烯與聚左旋乳酸 、空間侷限尺寸 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In our previous work, crystallization from hard confinement to soft confinement under strong segregation strength in crystallizable block copolymer, poly(styrene)-block-poly(L-lactide) (PS-PLLA) (having Tg,PS ~ 85 °C, Tg,PLLA ~ 45 °C, Tm,PLLA ~ 150 °C), in microphase-separated lamellar morphology has been studied. An undulated morphology induced by crystallization in lamellar structure was observed in the PS13-PLLA24 block copolymer at Tc,PLLA > Tg,PS (i.e. soft confinement). In this study, a series of semicrystalline block copolymers PS-PLLA with lamellar microstructure were synthesized. A variety of PS-PLLA with different molecular weights, namely distinct segregated strength, were obtatined and crystallized from hard confinement (i.e., the crystallization temperature of PLLA (Tc,PLLA) < the glass transition temperature of PS (Tg,PS)) to soft confinement (i.e., Tc,PLLA>Tg,PS), where interesting morphological evolution was studied by transmission electron microscopy (TEM) and time-resolved small angle X-ray scattering (SAXS). A confined morphology for crystallized PS14-PLLA15 (high-molecular-weight samples) was observed at Tc,PLLA < Tg,PS , while at Tc,PLLA > Tg,PS, an undulated morphology was found. The effect of crystallization on microphase-separated lamellae suggests a strong dependence on the confined environments (i.e., Tg effect) justified by the ratio of Tc,PLLA and Tg,PS that plays a critical role in determining the ultimate morphology after the crystallization of PLLA. Compared to Tg effect, the effect of segregation strength on the morphological evolution is insignificant.
To further examine the effect of segregation strength on morphological evolution, a low-molecular-weight PS04-PLLA05 was synthesized. With the reduction of segregation strength in the PS-PLLA, undulated morphology was observed in both hard and soft confinement. To further examine the undulated morphology, the order-disorder transition temperature (TODT) of PS04-PLLA05 (i.e. low-MW samples) was determined by real-time SAXS heating experiments. The undulation of lamellae in the PS04-PLLA05 samples is initiated by the annealing at which the temperature is close to TODT; suggesting that the extent of thermal fluctuations causes the formation of lamellar undulation instead of crystallization event.
Furthermore, we explored polymeric crystallization mechanism under various nanoscale confined sizes by varying the molecular weight of PS-PLLA copolymer, namely the confined size. Compared to PLLA homopolymer, a significant variation of maximum crystallization-rate-
temperature (Tf) of PLLA block crystallized in PS-PLLA block copolymer can be identified because of the one-dimensional confinement effect. Furthermore, the dependence of crystallization halftime (t1/2) on Tc and dPLLA (i.e., confined size) was examined. Similarly, the increase in t1/2 was attributed to retardation of crystallization in PLLA blocks under 1-D confinement. Consequently, a significant decrease in crystallization rate is referred to the variation of confined size. In this study, however, a distinct transformation of isothermal crystallization kinetics, from heterogeneous to homogeneous nucleation, and a transformation in crystallographic orientation, from perpendicular to parallel type were not found even with the reduction of confined size. These results suggest that the confined size in all PS-PLLA block copolymers is not small enough to change the crystallization mechanism.
In our previous work, crystallization from hard confinement to soft confinement under strong segregation strength in crystallizable block copolymer, poly(styrene)-block-poly(L-lactide) (PS-PLLA) (having Tg,PS ~ 85 °C, Tg,PLLA ~ 45 °C, Tm,PLLA ~ 150 °C), in microphase-separated lamellar morphology has been studied. An undulated morphology induced by crystallization in lamellar structure was observed in the PS13-PLLA24 block copolymer at Tc,PLLA > Tg,PS (i.e. soft confinement). In this study, a series of semicrystalline block copolymers PS-PLLA with lamellar microstructure were synthesized. A variety of PS-PLLA with different molecular weights, namely distinct segregated strength, were obtatined and crystallized from hard confinement (i.e., the crystallization temperature of PLLA (Tc,PLLA) < the glass transition temperature of PS (Tg,PS)) to soft confinement (i.e., Tc,PLLA>Tg,PS), where interesting morphological evolution was studied by transmission electron microscopy (TEM) and time-resolved small angle X-ray scattering (SAXS). A confined morphology for crystallized PS14-PLLA15 (high-molecular-weight samples) was observed at Tc,PLLA < Tg,PS , while at Tc,PLLA > Tg,PS, an undulated morphology was found. The effect of crystallization on microphase-separated lamellae suggests a strong dependence on the confined environments (i.e., Tg effect) justified by the ratio of Tc,PLLA and Tg,PS that plays a critical role in determining the ultimate morphology after the crystallization of PLLA. Compared to Tg effect, the effect of segregation strength on the morphological evolution is insignificant.
1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
17. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
18. Adedeli, A.; Ho, R.-M.; Giles, D. W.; Hajduk, D. A.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Polym. Phys. 1997, 35, 2857.
19. Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
20. Yang, Y.-W.; Tanodekaew, S.; Mai, S.-M.; Booth, C.; Ryan, A. J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
21. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B 1999, 60, 10022.
22. Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
23. Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
24. Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
25. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
26. Liu, L.-Z.; Yeh, F.; Chu, B. Macromolecules 1996, 29, 5336.
27. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
28. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
29. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
30. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
31. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2053.
32. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
33. Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
34. Zhu, L.; Cheng, S. Z.-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
35. Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z.-D.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 1244.
36. Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
37. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
38. Sun, L.; Zhu, L.; Ge, Q.; Quirk, R. P.; Xue, C.C.; Cheng, S. Z. D.; Hsiao, B. S.; Avila-Orta C. A.; Sics, I.; Cantino, M. E. Polymer 2004, 45, 2931.
39. Koo, C. M.; Wu, L.; Lim, L. S.; Mahanthappa, M. K.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2005, 38, 6090.
40. Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
41. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
42. Kofinas, P.; Cohen, R. E. Macromolecules 1994, 27, 3002.
43. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
44. Mai, S.-M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.; Hamley, I. W.; Ryan, A. J.; Booth, C. Macromolecules 1997, 30, 8392.
45. Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
46. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
47. Chen, H.-L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
48. Chen, H.-L.; Wu, J. C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
49. Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
50. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
51. Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z.-D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L.; Polymers 2001, 42, 9192.
52. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
53. Ho, R.-M.; Chung, T. -M.; Kuo J. -C.; Tsai, J. -C.; Hsiao, B. S.; Sics, I. Macromo.l Rapidly Commun. 2005, 36, 107.
54. Chung, T. -M.; Ho, R.-M.; Kuo J. -C.; Tsai, J. -C.; Hsiao, B. S.; Sics, I. Macromolecules 2006, 36, 2739.
55. Leibler, L. Macromolecules 1980, 13, 1602.
56. Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.
57. Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2632..
58. Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 92, 6255.
59. Bates, F. S.; Rosedale, J. H.; Macromolecules 1995, 28, 1429.
60. Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
61. Ogawa, T.; Sakamoto, N.; Hashimoto, T.; Han, C. D.; Baek, D. M. Macromolecules 1996, 29, 2113.
62. Hashimoto, T.; Sakamoto, N.; Ogawa, T.; Han, C. D.; Baek, D. M. Amundson, K.; Helfand, E. Macromolecules 1993,26, 1324.
63. Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Bernard Lotz. Macromolecules 2006, 39, 5782.
64. Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Macromolecules 2007, 40, 6778.
65. Park, C.; De Rosa, C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 7931.
66. Loo, Y.-L.; Register, R. A.; Adamson, D. H Macromolecules 2000, 33, 8361.
67. Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640.
68. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009.
69. Craven, J. R.; Hao, Z.; Booth, C. J. Chem. Soc., Faraday Trans. 1991, 87, 1183.
70. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
71. Viras, K.; Viras, F.; Campbell, C.; King, T. A.; Booth, C. J. Chem. Soc., Faraday Trans. 1987, 83, 917.
72. Yeates, S. G.; Booth, C. Makromol. Chem. 1985, 186, 2663.
73. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature (London) 2000, 405, 433.
74. Reiter, G.; Gastelein, G.; Hoerner, P.; Riess, Blumen, A.; Sommer, J.-U. Phys. ReV. Lett. 1999, 83, 3844.
75. Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C. C.; Huang, B. H. Macromolecules 2003, 36, 9085.
76. Tsuji, H.; Ikada, Y. Polymer 1995, 36, 2709.
77. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
78. Hoogsten, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634.
79. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
80. Khan, S. A.; Larson, R. G. Rheol. Acta 1991, 30, 1.
81. Lee, H. H.; Register, R. A.; Hajduk, D. A.; Gruner, S. M. Polym. Eng. Sci. 1996, 36, 1414.
82. Chen, W. Y.; Zheng, J. X.; Cheng, S. Z. D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Guo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Phys. Rev. Lett., 2004, 93, 28301.
83. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.