簡易檢索 / 詳目顯示

研究生: 古聖如
Ku, Sheng-Ju
論文名稱: 正交分頻多工系統之低複雜度SLM及PTS峰值對平均功率比降低技術
Low-Complexity SLM and PTS Schemes for PAPR Reduction in OFDM Systems
指導教授: 王晉良
Wang, Chin-Liang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 138
中文關鍵詞: 正交分頻多工峰值對平均功率比選擇映射方法部分傳送續列方法反快速傅立葉轉換內插器
外文關鍵詞: OFDM ( orthogonal frequency division multiplexing), PAPR (peak-to-average power ratio), SLM (selected mapping), PTS (partial transmit sequences), IFFT (inverse fast Fourier transform), interpolator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工(OFDM,orthogonal frequency division multiplexing)技術擁有高頻譜效能以及抵抗因多路徑所造成的衰減效應等特性,因此被廣泛的應用在許多高速的資料傳輸系統中。然而,OFDM系統具有高峰值對平均功率比(PAPR, peak-to-average power ratio)等缺點。當具有高PAPR的OFDM信號通過非線性元件時,經常造成信號失真等現象。
    SLM (selected mapping) 與PTS (partial transmit sequences) 是兩種有效降低OFDM系統之PAPR的技術。在SLM 方法中,輸入資料區塊(input data block)被乘上不同的相位旋轉向量(phase rotation vectors),然後經由反快速傅立葉轉換(IFFT,inverse fast Fourier transform)產生不同的候選OFDM信號(candidate OFDM signals),再從中選出PAPR最小者傳送出去。在PTS 方法中,以子區塊分割法(SPM, subblock partition method)將輸入資料區塊平均分成數個子區塊,然後將每個子區塊的IFFT值做最佳化的組合,產生一個低PAPR的OFDM信號並傳送出去。雖然上述兩種方法都有很好的PAPR降低效能,然而在IFFT運算及/或最佳化的過程中需要高的運算複雜度。在本論文中,我們將提出數個方法用來解決SLM與PTS方法中高運算複雜度的問題。
    首先,我們提出數個低複雜度的轉換矩陣(CMs,conversion matrices)用來降低SLM方法中的IFFT運算複雜度。對一個具有N個子載波(subcarriers)並採用L倍過取樣(oversampling)的OFDM系統而言,我們所提出的以轉換矩陣為基礎(CM-based)的方法只需要3LN個複數加法,就能利用一個LN點的IFFT輸出產生另一個LN點的IFFT輸出(即候選信號)。與傳統的SLM方法相比較,所提出的CM-based方法能以較低的運算複雜度達到極接近的位元錯誤率(BER,bit-error-rate),而在降低PAPR的效能上只有少許的下降。其次,我們提出一個新的演算法來簡化PTS技術中的最佳化過程。在提出的PTS方法中,先產生一評估函數(cost function)用來選擇每個候選信號上適當的取樣點(samples)。在最佳化過程中,這些被選取的取樣點將被用來計算每一個候選信號上的峰值功率(peak power)。此新的PTS方法能以較低的運算複雜度,達到與傳統PTS方法幾乎一樣的PAPR降低效能。
    我們也證明PTS方法是SLM方法的一個特例,其中相位旋轉向量(phase rotation vectors)裡的元素排列形式將由所採用的SPM來決定。特別是當PTS方法使用插入式(interleaved) SPM時,所相對的相位旋轉向量裡的元素具有週期性,此時可用低複雜度的CM-based方法將PTS方法以SLM的形式來實現。而當PTS方法使用毗連式(adjacent) SPM時,每個子區塊中的零元素(zero elements)將被連續的排列著。藉由此特性,我們提出一個機制及IFFT的架構來避免因零元素所造成的瑣細運算(trivial computations),藉此降低當PTS方法使用adjacent SPM時所需的複雜度。
    在現有的降低PAPR的方法中,為了能準確地估測出連續時間(continuous- time) OFDM信號的PAPR值,常採用四倍過取樣技術來取得離散時間(discrete-time) OFDM信號。然而,四倍過取樣技術會增加運算量及硬體的複雜度,特別是那些需要大量IFFT單元的方法尤甚。為了解決此問題,我們提出一個有效的方法來估測OFDM信號的PAPR值。此法先從過取樣因素(oversampling factor)小於四的原始離散時間OFDM信號中找出功率大於門檻值(threshold)的取樣點。再利用內插器(interpolator)對這些被選取的取樣點,找出四倍過取樣OFDM信號的峰值功率(peak power)。我們亦推導出訂定內插濾波器(interpolation filter)長度的準則,以及訂定在搜尋時域信號時之功率門檻值的準則。與一般採用四倍過取樣技術的方法相比,我們所提出的方法只需大約一半的運算複雜度就能達到非常接近的PAPR估測效能。此法可成功的與SLM技術相結合以降低OFDM系統的PAPR。


    Orthogonal frequency division multiplexing (OFDM) is an attractive technique for high-speed data transmission because it has high spectral efficiency and is robust against multipath fading. One main drawback of OFDM systems is the high peak-to-average power ratio (PAPR) at the transmitter’s output. When a high-PAPR OFDM signal passes through a nonlinear device, it may cause in-band distortion and undesired spectral spreading.
    Selected mapping (SLM) and partial transmit sequence (PTS) schemes are two efficient techniques for reducing the PAPR of OFDM systems. In SLM, the input data block is multiplied by a set of pre-determined phase rotation factors and then passed through a bank of inverse fast Fourier transform (IFFT) units to generate candidate OFDM signals, where the one with the lowest PAPR is selected for transmission. In PTS, the input data block is partitioned into a number of disjoint subblocks using a subblock partition method (SPM), and then the IFFTs of all the subblocks are optimally combined to form a low-PAPR OFDM signal for transmission. Although these two approaches have good PAPR reduction performance, the IFFT computation and/or the optimization process may involve high computational complexity. In this dissertation, we present several methods to alleviate these problems.
    We first develop a new set of low-complexity conversion matrices (CMs) to simplify the IFFT computation required for the SLM scheme. For an N-subcarrier OFDM system using L times oversampling, the proposed CM-based method uses an LN-point IFFT to generate other LN-point IFFTs (i.e., candidate signals) for the SLM scheme with only 3LN complex additions for each of them. As compared to the conventional SLM scheme, the proposed CM-based method achieves close bit-error-rate (BER) performance with much lower computational complexity but slightly worse PAPR reduction. We then develop a new algorithm to simplify the optimization process of the PTS technique. The proposed PTS scheme uses a cost function to select appropriate samples of each candidate signal for peak power calculation during the optimization process. It achieves almost the same PAPR reduction performance as the conventional PTS scheme, but has much lower computational complexity.
    We also show that the PTS scheme is a kind of SLM in which the elements of each phase rotation vector are arranged in a pattern determined by the SPM used. Specifically, the elements in the corresponding phase rotation vector are periodic when the PTS scheme uses the interleaved SPM. In this case, the PTS scheme can be realized as SLM by using the proposed low-complexity CM-based method. For the PTS using the adjacent SPM, each subblock of data consists of successive zero elements. Based on this special feature, we develop a mechanism along with an IFFT architecture to avoid trivial computations caused by those zero elements, which can reduce the complexity of the PTS scheme using the adjacent SPM.
    The existing PAPR reduction methods usually use four times oversampling for the discrete-time OFDM signal to approximate the PAPR of the continuous-time OFDM signal. However, the four times oversampling process increases the computational complexity, especially for those schemes with a large number of IFFT units. To overcome this problem, we propose an efficient method for PAPR estimation of OFDM signals. The proposed method uses an interpolator to find the peak of the four times oversampled OFDM signal around some searched samples of the original discrete-time OFDM signal using oversampling with a factor smaller than four. We also derive some criteria to determine the interpolation filter length and the threshold of sample power for the search process. As compared to the method with four times oversampling, the proposed scheme achieves close PAPR estimation performance with only about half of the computational complexity. It is verified that the proposed PAPR estimation method can successfully be combined with the SLM technique for PAPR reduction.

    Abstract i Contents iii List of Figures vii List of Tables xi Chapter 1 OFDM Principles 1 1.1 Introduction 1 1.2 OFDM Basics 1 1.3 Operations of OFDM Systems 4 1.4 Outline of the Dissertation 4 Chapter 2 The Peak-to-Average Power Ratio Problem in OFDM Systems 9 2.1 Introduction 9 2.2 Definition of PAPR 9 2.3 Distribution of PAPR 10 2.4 Effect of Nonlinear Devices 11 2.4.1 Model of Nonlinear Devices 12 2.4.2 Out-of-Band Radiation 13 2.4.3 In-Band Distortion 14 2.5 Overview of PAPR Reduction Methods 14 2.6 Summary 16 Chapter 3 New Conversion Matrices for SLM-Based PAPR Reduction Schemes 23 3.1 Introduction 23 3.2 The Conventional SLM Technique 24 3.3 The SLM Methods Using Low-Complexity Conversion Matrices 26 3.4 Proposed Phase Rotation Vectors and Conversion Matrices for the IFFT Computation 27 3.5 Simulation Results 29 3.6 Summary 31 Chapter 4 A New Reduced-Complexity PTS Scheme 39 4.1 Introduction 39 4.2 The Conventional PTS Technique 40 4.3 Subblock Partition Methods for PTS 41 4.4 Existing Methods for the Complexity Reduction of PTS 42 4.4.1 Reducing the Number of Candidate Signals 42 4.4.2 Reducing the Number of Samples Used to Calculate the Peak Power 43 4.5 A New PTS Scheme 44 4.5.1 A New Criterion for the Peak Position Prediction in a Candidate Signal 44 4.5.2 Selection of the Threshold □T for 46 4.6 Computational Complexity of PTS Schemes 47 4.6.1 Probability Distribution of 47 4.6.2 Comparisons of Computational Complexity 49 4.7 Comparison of PAPR Reduction Performance 50 4.8 Summary 51 Chapter 5 Relation Between SLM and PTS Schemes 59 5.1 Background 59 5.1.1 The Conventional SLM Technique 59 5.1.2 The Conventional PTS Technique 60 5.2 Phase Rotation Vectors of Different SPMs 61 5.3 Redundant Candidate Signals of the Interleaved SPM 63 5.4 Implementation of the PTS Scheme Using the Interleaved SPM 66 5.5 Comparison of Computational Complexity 68 5.6 Simulation Results 69 5.7 Summary 69 Chapter 6 Complexity Reduction of IFFT for PTS 77 6.1 Introduction 77 6.2 PTS Scheme by Using the Adjacent SPM 78 6.3 Examples for Subblocks Partitioned Using the Adjacent SPM 81 6.4 Implementation of IFFT for the PTS Scheme Using the Adjacent SPM 82 6.5 Computational Complexity Analysis 84 6.6 Summary 85 Chapter 7 Low-Complexity PAPR Estimation Schemes 93 7.1 Introduction 93 7.2 Background 94 7.2.1 PAPR Principles 94 7.2.2 Oversampling Techniques 96 7.3 Proposed PAPR Estimation Methods and the Modified SLM Schemes 97 7.3.1 Proposed “Search-and-Partial-Interpolation” (SPI) Scheme 97 7.3.2 The SPI Scheme Combined with the SLM Technique 100 7.4 Criteria for Determination of I and □ 100 7.4.1 Determination of I1 and I2 100 7.4.2 Determination of □1 and □2 101 7.4.3 Simulation Results 102 7.5 Complexity Analysis 103 7.5.1 IFFT Computation 103 7.5.2 SPI-1 and SPI-2 Schemes 103 7.5.3 MSLM-1 and MSLM-2 Schemes 105 7.6 Comparisons of PAPR Reduction Performance 105 7.7 Summary 106 Chapter 8 Conclusions 113 Appendix A Proof of Theorem 3.1 117 Appendix B Derivation of Equation (4.12) 121 Appendix C Computational Complexity of IFFT 123 Bibliography 127 Publications List 137

    [1] J. A. C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Commun. Mag., vol. 28, pp. 5-14, May 1990.
    [2] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston, MA: Artech House, 2000.
    [3] Y. Li and G. Stüber, Orthogonal Frequency Division Multiplexing for Wireless Communications. New York, NY: Springer, 2006.
    [4] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency-division multiplexing,” IEEE Trans. Commun., vol. COM-33, no. 7, pp. 665-675, July, 1985.
    [5] H. Rohling, T. May, K. Brüninghaus, and R. Grünheid,” Broad-band OFDM radio transmission for multimedia applications,” Proc. IEEE, vol 87, pp. 1778-1789, Oct. 1999.
    [6] M. Alard and R. Lassalle, “Principles of modulation and channel coding for digital broadcasting for mobile receivers”, BBU Review, pp. 47-69, Aug. 1987.
    [7] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” WTS 300 401 v1.3.2, Sept. 2000.
    [8] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., pp. 100-109, Feb. 1995.
    [9] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.3, Sept. 2000.
    [10] IEEE, “part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, Aug. 1999.
    [11] IEEE Std 802.16-2004, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE, Oct. 2004.
    [12] IEEE Std 802.16e-2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems—Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, IEEE, Feb. 2006.
    [13] ETSI, “Broadcasting Radio Access Networks (BRAN): Requirements and architectures for broadband fixed radio access networks.” TR 1001 177 v1.1.1, May 1998.
    [14] ETSI, “High Performance Radio Local Area Networks (HIPERLAN): Requirements and architectures for wireless ATM access and interconnection,” TR 101 031 v1.1.1, July 1997.
    [15] Asymmetric Digital Subscriber Line (ADSL) Metallic Interface, ANSI Std. T1.413-1995, 1995.
    [16] VDSL Alliance SDMT VDSL Draft Standard Proposal, ETSI STC/TM6, Apr. 1998.
    [17] P. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services,” IEEE J. Sel. Areas Commun., vol. 9, pp. 909-919, Aug. 1991.
    [18] S. B. Weinstein and P. M. Ebert, “Data Transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Tech., vol. COM-19, pp. 628-634, Oct. 1971.
    [19] D. Dardari, V. Tralli, and A. Vaccari, “A theoretical characterization of nonlinear distortion effects in OFDM systems,” IEEE Trans. Commun., vol. 48, no. 10, pp. 1755-1764, Oct. 2000.
    [20] G. Wunder and H. Boche, “Peak value estimation of bandlimited signals from their samples, noise enhancement, and a local characterization in the neighborhood of an extremum,” IEEE Trans. Signal Process., vol. 51, no. 3, pp. 771-780, March 2003.
    [21] J. Tellado, Multicarrier Modulation with Low PAR: Applications to DSL and Wireless. Norwell, MA: Kluwer, 2000.
    [22] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes. 4th ed. New York: McGraw-Hill, 2002.
    [23] S. Q. Wei, D. L. Goeckel, and P. E. Kelly, “A modern extreme value theory approach to calculating the distribution of the peak-to-average power ratio in OFDM systems,” in Proc. 2002 IEEE Int. Conf. Commun. (ICC ‘2002), Apr. 2002, pp. 1686-1690.
    [24] T. Jiang, M. Guizani, H. H. Chen, W. Xiang, and Y. Wu, “Derivation of PAPR distribution for OFDM wireless systems based on extreme value theory,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1298-1305, Apr. 2008.
    [25] E. Costa, M. Midrio, and S. Pupolin, “Impact of amplifier nonlinearities on OFDM transmission system performance,” IEEE Trans. Commun., vol. 3, no. 2, pp. 37-39, Feb. 1999.
    [26] C. Rapp, “Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for a digital sound broadcasting system,” in Proc. 2nd European Conf. on Satellite Commun., Liege, Belgium, Oct. 1991, ESA-SP-332.
    [27] H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005.
    [28] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron. Lett., vol. 29, pp. 2080-2081, Nov. 1993.
    [29] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” in Proc. 1997 IEEE Veh. Technol. Conf. (VTC ’97), Phoenix, AZ, May, 1997, pp. 1634-1638.
    [30] J. S. Chow, J. A. C. Bingham, and M. S. Flowers, “Mitigating clipping noise in multi-carrier systems,” in Proc. 1997 IEEE Int. Commun. Conf. (ICC ‘97), Montreal, Canada, Jun. 1997, pp. 715-719.
    [31] H. Saeedi, M. Sharif, and F. Marvasti, “Clipping noise cancellation in OFDM systems using oversampled signal reconstruction,” IEEE Commun. Lett., vol. 6, no. 2, pp. 73-75, Feb. 2002.
    [32] X. Wang, T.T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303-307, Sept. 1999.
    [33] X. Huang, J. Lu, J. Zheng, J. Chuang, and J. Gu, “Reduction of peak-to-average power ratio of OFDM signals with companding transform,” Electron. Lett., vol. 37, no.8, pp. 506-507, Apr. 2001.
    [34] T. Jiang and G. Zhu, “Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 342-346, Sept. 2004.
    [35] X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 03, no. 6, pp. 2030-2039, Nov. 2004.
    [36] T. Jiang, Y. Yang, and Y. H. Song, “Exponential companding technique for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast., vol. 51, no. 2, pp. 244-248, June 2005.
    [37] C.-L. Wang and S.-J. Ku, “A low-complexity companding transform for peak-to-average power ratio reduction in OFDM systems,” in Proc. 2006 IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP 2006), Toulouse, France, May 2006, IV 329-332.
    [38] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Electron. Lett., vol. 30, pp. 2098-2099, Dec. 1994.
    [39] T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, IL, July 1995, pp. 825-829.
    [40] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ‘96), London, England, vol. 1, 1996, pp. 740-744.
    [41] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2397-2417, Nov. 1999.
    [42] D. Wulich and L. Goldfeld., “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun., vol. 47, no. 1, pp. 18-21, Jan. 1999.
    [43] C.-L. Wang, Y. Ouyang, and H.-C. Chen, “A peak-to-average power ratio reduction technique for the 802.11a wireless LAN,” in Proc. 2003 IEEE Veh. Technol. Conf. - Fall (VTC 2003-Fall), Orlando, FL, Oct. 2003, pp. 2287-2291.
    [44] C.-L. Wang, Y. Ouyang, and H.-C. Chen, “A low-complexity peak-to-average power ratio reduction technique for OFDM-based systems,” in Proc. 2004 IEEE Veh. Technol. Conf. - Fall (VTC 2004-Fall), Los Angles, CA, Sept. 2004, pp. 4380-4384.
    [45] Brian Scott Krongold and Douglas L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol.49, no. 3, pp. 258-268, Sept. 2003.
    [46] F. Longo , R. Ansari, Y. Yao, and F. Sellone, “Erasure pattern selection with active constellation extension for peak-to-average power ratio reduction in OFDM,” IEEE Int. Conf. Electro/Infor. Technol., May 2007, pp. 53-58.
    [47] M. Sharif and B. Hassbi, “A deterministic algorithm that achieves the PMEPR of clogn for multicarrier signals,” In Proc. 2003 IEEE Int. Conf. Acoust., Speech, and Signal Process., (ICASSP 2003), Hong Kong, Apr., 2003, pp. 540-543.
    [48] Y.-J. Kou, W.-S. Lu, and A. Antoniou, “A new peak-to-average power ratio reduction algorithm for OFDM systems via constellation extension,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1823-1832, May 2007.
    [49] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.
    [50] M. Breiling, S. H. Müller, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239-241, Jun. 2001.
    [51] D.-W. Lim, J.-S. No, C.-W. Lim, and H. Chung, “A new SLM OFDM scheme with Low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no.2, pp. 93-96, Feb, 2005.
    [52] C.-L. Wang, M.-Y. Hsu, and Y. Ouyang, “A low-complexity peak-to-average power ratio reduction technique for OFDM systems,” in Proc. 2003 Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, Dec. 2003, pp. 2375-2379.
    [53] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
    [54] S.-J. Heo, H.-S. Noh, J.-S. No, and D.-J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 55, no. 4, pp. 804-808, Dec. 2007.
    [55] G. T. Zhou and L. Peng, “ Optimality condition for selected mapping in OFDM,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3159-3165, Aug. 2006.
    [56] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, pp. 368-369, Feb. 1997.
    [57] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequence,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, March 2000.
    [58] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol. 36, no. 14, pp. 1226-1228, Jul. 2000.
    [59] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887-890, Nov. 2004.
    [60] A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM signals using partial transmit sequence: An optimal approach using sphere decoding,” IEEE Commun. Lett., vol. 9, no. 11, pp. 982-984, Nov. 2005.
    [61] H.-Y. Tseng, Y.-H. Chung, S.-M. Phoong, and Y.-P. Lin, “A reduced-complexity PTS scheme for peak-to-average power ratio reduction in OFDM systems,’’ in Proc. 16th European Signal Process., (EUSIPCO 2008), Aug. 2008.
    [62] Y. Xiao, X. Lei, Q. Wen, and S. Li G., “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680-683, Oct. 2007.
    [63] L. Wang and Y. Cao, “Sub-optimum PTS for PAPR reduction of OFDM signals,” Electron. Lett., vol. 44, no. 15, pp. 921-922, Jul. 2008.
    [64] A. Ghassemi and T. A. Gulliver, “A low complexity IFFT-based PTS technique for PAPR reduction in OFDM Systems,” in Proc. 2007 IEEE Veh. Technol. Conf. - Fall (VTC 2007-Fall), Baltimore, MD, Sept. 2007, pp. 616-619.
    [65] A. Ghassemi and T. A. Gulliver, “PTS-Based Radix FFT for PAPR Reduction in OFDM Systems,” in Proc. 2007 IEEE Wireless Commun. and Netw. Conf. (WCNC 2007), Hong Kong, Mar. 2007, pp. 1324-1329.
    [66] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences with embedded side information,” in Proc. 2000 Global Telecommun. Conf. (GLOBECOM 2000), San Francisco, CA, Nov. 2000, pp. 746-750.
    [67] Th. Giannopoulos and V. Paliouras, “A low-complexity PTS-based PAPR reduction technique for OFDM signals without transmission of side information,” in Proc. IEEE Workshop on Signal Process. (SiPS '06), Banff, Canada, Oct. 2006, pp. 434-439.
    [68] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power reduction of OFDM signals without side information,” IEEE Trans. Wireless Commun., vol. 04, no. 5, pp. 2006-2013, Sept. 2005.
    [69] S. G. Kang, J. G. Kim and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 333-338, Sept. 1999.
    [70] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1998.
    [71] M. R. Spiegel, Schaum’s Mathematical Handbook of Formulas and Tables. 2nd ed. New York: McGraw-Hill, 1998.
    [72] J. Nam, S. R. Kim, and H. K. Chung, “Cholesky Based Efficient Algorithms for the MMSE-SIC Receiver,” in Proc. 2007 Global Telecommun. Conf. (GLOBECOM 2007), Washington, D.C., Nov. 2007, pp. 3045-3050.
    [73] E. O. Brigham, The Fast Fourier Transform and Its Applications. Englewood Cliffs, NJ: Prentice-Hall, 1988.
    [74] C.-H. Chang, C.-L. Wang, and Y.-T. Chang, “Efficient VLSI architectures for fast computation of the discrete Fourier transform and its inverse,” IEEE Trans. Signal Process., vol. 48, pp. 3206-3216, Nov. 2000.
    [75] C.-L. Wang and C.-H. Chang, “A new memory-based FFT processor for VDSL transceivers,” in Proc. 2001 IEEE Int. Symp. on Circuits and Syst. (ISCAS 2001), Sydney, Australia, May 2001, vol. 4, pp. 670-673.
    [76] C.-K. Chang, C.-P. Hung, and S.-G. Chen, “An efficient memory-based FFT architecture,” in Proc. 2003 IEEE Int. Symp. on Circuits and Syst. (ISCAS 2003), Bangkok, Thailand, May 2003, vol. 2, II-129-II-132.
    [77] C.-L. Wang and S.-J. Ku, “A design methodology of buffer-memory architectures for FFT computation,” in Proc. 13th European Signal Process., (EUSIPCO 2005), Antalya, Turkey, Sept. 2005.
    [78] S.-J. Ku and C.-L. Wang, “A new buffer-memory architecture for FFT computation,” in Proc. 2005 Int. Symp. on Commun., (ISCOM 2005), Kaohsiung, Nov. 2005.
    [79] J. A. C. Bingham, “A road to future broadband wireless access: MIMO-OFDM-based air interface,” IEEE Commun. Mag., vol. 43, pp. 53-60, Jan. 2005.
    [80] Y. Lee, Y. You, W. Jeon, J. Paik, and H. Song, “Peak-to-average power ratio in MIMO-OFDM systems using selective mapping,” IEEE Commun. Lett., vol. 7, no. 12, pp. 575-577, Dec. 2003.
    [81] H. Lee, D. N. Liu, W. Zhu, and, M. P. Fitz, “Peak power reduction using a unitary rotation in multiple transmit antennas,” in Proc. 2005 IEEE Int. Commun. Conf. (ICC ‘05), Seoul, Korea, May 2005, pp. 16-20.
    [82] Z. Latinović and Y. Bar-Ness, “SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion,” IEEE Commun. Lett., vol. 10, no. 4, pp. 266 - 268, Apr. 2006.
    [83] L. Wang and Y. Wang, “MIMO-OFDM peak-to-average power ratio reduction by two- dimensional permutation,” Electron. Lett., vol. 43, no. 10, pp. 579-580, May 2007.
    [84] U.-K. Kwon, D. Kim, and G.-H. Im, “Amplitude clipping and iterative reconstruction of MIMO-OFDM signals with optimum equalization,” IEEE Trans. Wireless Commun., vol. 08, no. 1, pp. 268-277, Jan. 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE