研究生: |
江苡宸 Chiang, Yi-Chen |
---|---|
論文名稱: |
表面電漿子晶格與R6G染料分子之強耦合作用研究 Strong Coupling between Surface Plasmonic Lattice and Rhodamine 6G Dye Molecules |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: |
張文豪
Chang, Wen-Hao 吳致盛 Wu, Jhih-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 羅丹明6G 、電漿子晶格 、奈米圓孔陣列 |
外文關鍵詞: | Rhodamine 6G, Plasmonic lattice, Nanohole array |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光與物質間的交互作用會產生極化子是未來研究光子和光電器件中一個很重要的現象,透過共振腔內的電磁波和物質中偶極矩躍遷之間的同調能量交換可以形成一個新的極化系統,而Rabi 分裂通常會大於原本光與物質間交互作用所產生的線寬並且能在頻域中觀察到反交叉的現象。
本論文主要研究羅丹明6G (R6G)染料分子與銀奈米圓孔陣列的強耦合現象並且探討其在動量空間中的極化子物理。為了實現這個系統,我們首先透過時域有限差分(FDTD)來模擬近場下的分佈以證明金屬和介電質界面之間存在傳播的表面電漿子(SPP)。第二,將聚乙烯吡咯烷酮 (PVP)層(~90 nm)旋塗於銀奈米圓孔陣列表面,利用角度分辨量測系統測量不同週期的銀奈米圓孔陣列之色散關係,並且用耦合模態模型(Coupled mode modeling)來分析消光光譜。
在我們的研究結果中,角度分辨消光光譜顯示傳播的SPP去耦合成光子並且輻射到遠場。為了探討電漿子-激子-極化子(Plasmon-exciton polariton, PEP),也就是光與物質間的相互作用,在銀奈米圓孔陣列表面塗覆R6G與高分子聚合物的基質去測量其角度分辨消光和螢光光譜。利用角度分辨的技術在此極化系統中觀察到強耦合現象和極化子。最後,我們還觀察到PEP所形成的極化子能帶和極化子能隙。
Controlling lightmatter interaction forms polariton states is a key factor of future photonic and optoelectronic devices. The polaritonic systems can be formed by strongly coherent energy exchange between electromagnetic modes and electronic transition states. Generally, Rabi splitting larger than line widths of the intrinsic light and matter states in strong coupling regime, and energy anti-crossing phenomenon will be observed in detuning spectra. Polaritons are half-light, half-matter bosonic quasiparticles and offer the possibilities to explore manybody physics including Bose-Einstein condensation (BEC), polariton laser and some practical polaritonic devices.
This work focus on the Rhodamine 6G (R6G) dye molecules coupled with the plasmonic silver nanohole arrays and probe polaritonic dispersions in momentum space. For more realizing this open system, we firstly simulated nearfield distributions by finite-different time domain (FDTD) to evidence propagating SPPs exist between interface of metal and dielectric medium. Secondly, polyvinylpyrrolidone (PVP) layer (~90 nm) covered on top of plasmonic silver nanohole arrays by spin-coating technique, measuring dispersions of the plasmonic silver nanohole arrays with different pitches by the angle-resolved extinction setup, and using coupled mode modeling to analyze these results. To discuss plasmon-exciton polaritons (e.g. light-matter interaction), R6G polymer matrix covered on plasmonic silver nanohole arrays, and measuring angle-resolved extinction and photoluminescence spectra. In this polaritonic system, strong coupling phenomena and polariton emission are observed by angular detuning, respectively. Furthermore, we also observed polariton band and gaps are formed by propagating plasmon-exciton polariton.
1. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
2. Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X., Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chemical Society Reviews 2016, 45 (20), 5672-5716.
3. Gwo, S.; Shih, C.-K., Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 2016, 79 (8), 086501.
4. Naik, G. V.; Shalaev, V. M.; Boltasseva, A., Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 2013, 25 (24), 3264-3294.
5. Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A., Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391 (6668), 667-669.
6. Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T., Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5 (1), 24-42.
7. Vasa, P.; Lienau, C., Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. ACS Photonics 2018, 5 (1), 2-23.
8. Winkler, J. M.; Rabouw, F. T.; Rossinelli, A. A.; Jayanti, S. V.; McPeak, K. M.; Kim, D. K.; le Feber, B.; Prins, F.; Norris, D. J., Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters 2019, 19 (1), 108-115.
9. Huang, J.; Traverso, A. J.; Yang, G.; Mikkelsen, M. H., Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces. ACS Photonics 2019, 6 (4), 838-843.
10. Väkeväinen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A. P.; Martikainen, J. P.; Kim, D. H.; Törmä, P., Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Letters 2014, 14 (4), 1721-1727.
11. Wang, C.-Y.; Sang, Y.; Yang, X.; Raja, S. S.; Cheng, C.-W.; Li, H.; Ding, Y.; Sun, S.; Ahn, H.; Shih, C.-K.; Gwo, S.; Shi, J., Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of √N Scaling Rule. Nano Letters 2021, 21 (1), 605-611.
12. Sang, Y.; Wang, C.-Y.; Raja, S. S.; Cheng, C.-W.; Huang, C.-T.; Chen, C.-A.; Zhang, X.-Q.; Ahn, H.; Shih, C.-K.; Lee, Y.-H.; Shi, J.; Gwo, S., Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters 2021, 21 (6), 2596-2602.
13. Hakala, T. K.; Moilanen, A. J.; Väkeväinen, A. I.; Guo, R.; Martikainen, J.-P.; Daskalakis, K. S.; Rekola, H. T.; Julku, A.; Törmä, P., Bose–Einstein condensation in a plasmonic lattice. Nature Physics 2018, 14 (7), 739-744.
14. Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N., Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews 2018, 118 (12), 5912-5951.
15. Novotny, L., Strong coupling, energy splitting, and level crossings: A classical perspective. American Journal of Physics 2010, 78 (11), 1199-1202.
16. Törmä, P.; Barnes, W. L., Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics 2014, 78 (1), 013901.
17. Cheng, C.-W.; Liao, Y.-J.; Liu, C.-Y.; Wu, B.-H.; Raja, S. S.; Wang, C.-Y.; Li, X.; Shih, C.-K.; Chen, L.-J.; Gwo, S., Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions. ACS Photonics 2018, 5 (7), 2624-2630.
18. Wu, Y.; Zhang, C.; Estakhri, N. M.; Zhao, Y.; Kim, J.; Zhang, M.; Liu, X.-X.; Pribil, G. K.; Alù, A.; Shih, C.-K.; Li, X., Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Advanced Materials 2014, 26 (35), 6106-6110.
19. Cheng, F.; Su, P.-H.; Choi, J.; Gwo, S.; Li, X.; Shih, C.-K., Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano 2016, 10 (11), 9852-9860.
20. Cheng, F.; Lee, C.-J.; Choi, J.; Wang, C.-Y.; Zhang, Q.; Zhang, H.; Gwo, S.; Chang, W.-H.; Li, X.; Shih, C.-K., Epitaxial Growth of Optically Thick, Single Crystalline Silver Films for Plasmonics. ACS Applied Materials & Interfaces 2019, 11 (3), 3189-3195.
21. Zhang, Y.; Zhao, M.; Wang, J.; Liu, W.; Wang, B.; Hu, S.; Lu, G.; Chen, A.; Cui, J.; Zhang, W.; Hsu, C. W.; Liu, X.; Shi, L.; Yin, H.; Zi, J., Momentum-space imaging spectroscopy for the study of nanophotonic materials. Science Bulletin 2021, 66 (8), 824-838.
22. Hakala, T. K.; Toppari, J. J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.; Törmä, P., Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Physical Review Letters 2009, 103 (5), 053602.