研究生: |
宋立瑜 |
---|---|
論文名稱: |
桿狀病毒表現之生長因子促進軟骨細胞分化狀態之研究 Ex vivo Enhancement in Re-differentiation of Passaged Chondrocytes by Baculoviurs-mediated Growth Factors |
指導教授: | 胡育誠 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 桿狀病毒 、生長因子 、軟骨細胞 、基因治療 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於受損軟骨組織的修補,目前以自體軟骨細胞移植(autologous chondrocyte transplantation, ACT)為主流方法。主要是將自體軟骨細胞於體外培養至足夠數目後再植回缺損處,然而軟骨細胞在繼代的過程中,會逐漸變為去分化的型態,大幅減弱ACT之療效。由於生長因子TGF-□1 (transforming growth factor-β1)、IGF-1 (insulin-like growth factor-1)及BMP-2 (bone morphogenetic protein-2)皆具有促進軟骨細胞分化狀態的效果,我們以桿狀病毒載體分別將這三種生長因子基因送入胞內,希望以去分化之軟骨細胞在這些生長因子刺激下,能恢復至正常之分化狀態。
本研究中,我們建構了三種重組桿狀病毒: Bac-CT (表現TGF-β1)、Bac-CI (表現IGF-1)及Bac-CB (表現BMP-2),在不同病毒劑量下我們分別對不同代數的兔子關節軟骨細胞(P1、P3及P5)進行病毒轉導。首先,我們收集轉導一天後之培養基以進行ELISA分析,結果顯示三種生長因子皆成功分泌至培養基中,且各自逹到有效濃度。接著,P1及P3細胞在轉導五天後,其型態轉成類似軟骨細胞的圓形,證明生長因子的刺激效用。接著以qRT-PCR分析軟骨細胞指標基因,如第二型膠原蛋白(Tyep II collagne)與aggrecan之mRNA含量,我們證明P3細胞在生長因子刺激下,可促進細胞分化狀態,其中以BMP-2的效用最為顯著(分別提升到2.5倍與4倍)。進一步,我們以共同轉導或序列轉導方式,將細胞種入3D生醫材料(alginate bead)中,促使體外培養的軟骨細胞達到最佳分化狀態並分泌細胞外間質,從切片染色結果分析以共同轉導組合(Bac-CB+ Bac-CT)的效用最佳。這些實驗顯示桿狀病毒為一相當具有潛力之基因治療載體,將來可望在組織工程領域中嶄露頭角。
[1] Emery, V.C. and Bishop, D.H. (1987) The development of multiple expression vectors for high level synthesis of eukaryotic proteins: expression of LCMV-N and AcNPV polyhedrin protein by a recombinant baculovirus. Protein Eng 1, 359-66.
[2] Wang, X.Z., Ooi, B.G. and Miller, L.K. (1991) Baculovirus vectors for multiple gene expression and for occluded virus production. Gene 100, 131-7.
[3] Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92, 10099-103.
[4] Boyce, F.M. and Bucher, N.L. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93, 2348-52.
[5] Sarkis, C., Serguera, C., Petres, S., Buchet, D., Ridet, J.L., Edelman, L. and Mallet, J. (2000) Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 97, 14638-43.
[6] Dwarakanath, R.S., Clark, C.L., McElroy, A.K. and Spector, D.H. (2001) The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284, 297-307.
[7] Ma, L., Tamarina, N., Wang, Y., Kuznetsov, A., Patel, N., Kending, C., Hering, B.J. and Philipson, L.H. (2000) Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 49, 1986-91.
[8] Leisy, D.J., Lewis, T.D., Leong, J.A. and Rohrmann, G.F. (2003) Transduction of cultured fish cells with recombinant baculoviruses. J Gen Virol 84, 1173-8.
[9] Ho, Y.C., Chen, H.C., Wang, K.C. and Hu, Y.C. (2004) Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng 88, 643-51.
[10] Ho, Y.C., Chung, Y.C., Hwang, S.M., Wang, K.C. and Hu, Y.C. (2005) Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 7, 860-8.
[11] Shoji, I., Aizaki, H., Tani, H., Ishii, K., Chiba, T., Saito, I., Miyamura, T. and Matsuura, Y. (1997) Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78 ( Pt 10), 2657-64.
[12] Condreay, J.P., Witherspoon, S.M., Clay, W.C. and Kost, T.A. (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96, 127-32.
[13] Sandig, V., Hofmann, C., Steinert, S., Jennings, G., Schlag, P. and Strauss, M. (1996) Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 7, 1937-45.
[14] Kost, T.A. and Condreay, J.P. (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20, 173-80.
[15] Pieroni, L., Maione, D. and La Monica, N. (2001) In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther 12, 871-81.
[16] Airenne, K.J., Hiltunen, M.O., Turunen, M.P., Turunen, A.M., Laitinen, O.H., Kulomaa, M.S. and Yla-Herttuala, S. (2000) Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther 7, 1499-504.
[17] Kost, T.A., Condreay, J.P. and Jarvis, D.L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, 567-75.
[18] Stockwell, R.A. (1967) The cell density of human articular and costal cartilage. J Anat 101, 753-63.
[19] Risbud, M.V. and Sittinger, M. (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20, 351-6.
[20] Linn, F.C. and Sokoloff, L. (1965) Movement and Composition of Interstitial Fluid of Cartilage. Arthritis Rheum 8, 481-94.
[21] Buckwalter, J.A. and Rosenberg, L.C. (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem 257, 9830-9.
[22] Buckwalter, J.A., Rosenberg, L.C. and Tang, L.H. (1984) The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage. J Biol Chem 259, 5361-3.
[23] Robinson, D. and Nevo, Z. (2001) Articular Cartilage Chondrocytes are more Advantageous for Generating Hyaline-like Cartilage than Mesenchymal Cells Isolated from Microfracture Repairs. Cell Tissue Bank 2, 23-30.
[24] Bell, E. (1997) Tissue Enigneering in perspective. Principles of tissue engineering, Landes RG, New York.
[25] Cancedda, R., Dozin, B., Giannoni, P. and Quarto, R. (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22, 81-91.
[26] Grundmann, K., Zimmermann, B., Barrach, H.J. and Merker, H.J. (1980) Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Morphological and immunohistochemical studies. Virchows Arch A Pathol Anat Histol 389, 167-87.
[27] Hughes, F.J., Collyer, J., Stanfield, M. and Goodman, S.A. (1995) The effects of bone morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology 136, 2671-7.
[28] Zhang, W.V. and Stott, N.S. (2004) BMP-2-Modulated Chondrogenic Differentiation In Vitro Involves Down-Regulation of Membrane-Bound Beta-Catenin. Cell Commun Adhes 11, 89-102.
[29] Olney, R.C., Wang, J., Sylvester, J.E. and Mougey, E.B. (2004) Growth factor regulation of human growth plate chondrocyte proliferation in vitro. Biochem Biophys Res Commun 317, 1171-82.
[30] Lee, D.K., Choi, K.B., Oh, I.S., Song, S.U., Hwang, S., Lim, C.L., Hyun, J.P., Lee, H.Y., Chi, G.F., Yi, Y., Yip, V., Kim, J., Lee, E.B., Noh, M.J. and Lee, K.H. (2005) Continuous transforming growth factor beta1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation. Tissue Eng 11, 310-8.
[31] Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M.D., Kohn, D. and Trippel, S.B. (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12, 1171-9.
[32] Smith, P., Shuler, F.D., Georgescu, H.I., Ghivizzani, S.C., Johnstone, B., Niyibizi, C., Robbins, P.D. and Evans, C.H. (2000) Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 43, 1156-64.
[33] Sekiya, I., Larson, B.L., Vuoristo, J.T., Reger, R.L. and Prockop, D.J. (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320, 269-76.
[34] Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G. and Freed, L.E. (2001) Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 83, 121-8.
[35] Pei, M., Seidel, J., Vunjak-Novakovic, G. and Freed, L.E. (2002) Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 294, 149-54.
[36] Doehmer, J., Barinaga, M., Vale, W., Rosenfeld, M.G., Verma, I.M. and Evans, R.M. (1982) Introduction of rat growth hormone gene into mouse fibroblasts via a retroviral DNA vector: expression and regulation. Proc Natl Acad Sci U S A 79, 2268-72.
[37] Mitani, K., Graham, F.L. and Caskey, C.T. (1994) Transduction of human bone marrow by adenoviral vector. Hum Gene Ther 5, 941-8.
[38] Wang, X.S., Khuntirat, B., Qing, K., Ponnazhagan, S., Kube, D.M., Zhou, S., Dwarki, V.J. and Srivastava, A. (1998) Characterization of wild-type adeno-associated virus type 2-like particles generated during recombinant viral vector production and strategies for their elimination. J Virol 72, 5472-80.
[39] Hunziker, E.B. and Kapfinger, E. (1998) Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J Bone Joint Surg Br 80, 144-50.
[40] Kolettas, E., Muir, H.I., Barrett, J.C. and Hardingham, T.E. (2001) Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology (Oxford) 40, 1146-56.
[41] Klooster, A.R. and Bernier, S.M. (2005) Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocyte. Arthritis Res Ther 7, R127-38.
[42] Chen, H.C., Lee, H.P., Sung, M.L., Liao, C.J. and Hu, Y.C. (2004) A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Biotechnol Prog 20, 1802-9.
[43] Carver, S.E. and Heath, C.A. (1999) Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 62, 166-74.
[44] Wu, T.Y., Liono, L., Chen, S.L., Chen, C.Y. and Chao, Y.C. (2000) Expression of highly controllable genes in insect cells using a modified tetracycline-regulated gene expression system. J Biotechnol 80, 75-83.
[45] Hsu, C.S., Ho, Y.C., Wang, K.C. and Hu, Y.C. (2004) Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 88, 42-51.
[46] Sipe, J.B., Zhang, J., Waits, C., Skikne, B., Garimella, R. and Anderson, H.C. (2004) Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone 35, 1316-22.
[47] Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M. and Wang, E.A. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528-34.
[48] Bassett, N.S., Breier, B.H., Hodgkinson, S.C., Davis, S.R., Henderson, H.V. and Gluckman, P.D. (1990) Plasma clearance of radiolabelled IGF-1 in the late gestation ovine fetus. J Dev Physiol 14, 73-9.
[49] Katagiri, T., Akiyama, S., Namiki, M., Komaki, M., Yamaguchi, A., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A. and Suda, T. (1997) Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res 230, 342-51.
[50] Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V. and Schlegel, J. (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10, 62-70.
[51] Benz, K., Breit, S., Lukoschek, M., Mau, H. and Richter, W. (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293, 284-92.
[52] Ulrich-Vinther, M., Stengaard, C., Schwarz, E.M., Goldring, M.B. and Soballe, K. (2005) Adeno-associated vector mediated gene transfer of transforming growth factor-beta1 to normal and osteoarthritic human chondrocytes stimulates cartilage anabolism. Eur Cell Mater 10, 40-50.
[53] Shuler, F.D., Georgescu, H.I., Niyibizi, C., Studer, R.K., Mi, Z., Johnstone, B., Robbins, R.D. and Evans, C.H. (2000) Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes. J Orthop Res 18, 585-92.
[54] Nixon, A.J., Lillich, J.T., Burton-Wurster, N., Lust, G. and Mohammed, H.O. (1998) Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-beta. J Orthop Res 16, 531-41.
[55] Sailor, L.Z., Hewick, R.M. and Morris, E.A. (1996) Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res 14, 937-45.
[56] Stokes, D.G., Liu, G., Coimbra, I.B., Piera-Velazquez, S., Crowl, R.M. and Jimenez, S.A. (2002) Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum 46, 404-19.
[57] Valcourt, U., Gouttenoire, J., Aubert-Foucher, E., Herbage, D. and Mallein-Gerin, F. (2003) Alternative splicing of type II procollagen pre-mRNA in chondrocytes is oppositely regulated by BMP-2 and TGF-beta1. FEBS Lett 545, 115-9.
[58] Goessler, U.R., Bugert, P., Bieback, K., Sadick, H., Verse, T., Baisch, A., Hormann, K. and Riedel, F. (2005) In vitro analysis of matrix proteins and growth factors in dedifferentiating human chondrocytes for tissue-engineered cartilage. Acta Otolaryngol 125, 647-53.
[59] Kypriotou, M., Fossard-Demoor, M., Chadjichristos, C., Ghayor, C., de Crombrugghe, B., Pujol, J.P. and Galera, P. (2003) SOX9 exerts a bifunctional effect on type II collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state. DNA Cell Biol 22, 119-29.
[60] Nixon, A.J., Haupt, J.L., Frisbie, D.D., Morisset, S.S., McIlwraith, C.W., Robbins, P.D., Evans, C.H. and Ghivizzani, S. (2005) Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther 12, 177-86.
[61] Chen, G., Sato, T., Ushida, T., Hirochika, R. and Tateishi, T. (2003) Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh. FEBS Lett 542, 95-9.
[62] Messai, H., Duchossoy, Y., Khatib, A.M., Panasyuk, A. and Mitrovic, D.R. (2000) Articular chondrocytes from aging rats respond poorly to insulin-like growth factor-1: an altered signaling pathway. Mech Ageing Dev 115, 21-37.
[63] Grunder, T., Gaissmaier, C., Fritz, J., Stoop, R., Hortschansky, P., Mollenhauer, J. and Aicher, W.K. (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 12, 559-67.
[64] Sandell, L.J., Morris, N., Robbins, J.R. and Goldring, M.B. (1991) Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol 114, 1307-19.
[65] Studer, R.K., Levicoff, E., Georgescu, H., Miller, L., Jaffurs, D. and Evans, C.H. (2000) Nitric oxide inhibits chondrocyte response to IGF-I: inhibition of IGF-IRbeta tyrosine phosphorylation. Am J Physiol Cell Physiol 279, C961-9.
[66] Darling, E.M. and Athanasiou, K.A. (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23, 425-32.
[67] Yang, I.H., Kim, S.H., Kim, Y.H., Sun, H.J., and Lee, J.W. (2004) Comparison of phenotypic characterization between "alginate bead" and "pellet" culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 45, 891-900.
[68] Yaeger, P.C., Masi, T.L., de Ortiz, J.L., Binette, F., Tubo, R. and McPherson, J.M. (1997) Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237, 318-25.
[69] Hanada, K., Solchaga, L.A., Caplan, A.I., Hering, T.M., Goldberg, V.M., Yoo, J.U. and Johnstone, B. (2001) BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 81, 284-94.
[70] Demoor-Fossard, M., Redini, F., Boittin, M. and Pujol, J.P. (1998) Expression of decorin and biglycan by rabbit articular chondrocytes. Effects of cytokines and phenotypic modulation. Biochim Biophys Acta 1398, 179-91.
[71] Zaucke, F., Dinser, R., Maurer, P. and Paulsson, M. (2001) Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J 358, 17-24.
[72] Szuts, V., Mollers, U., Bittner, K., Schurmann, G., Muratoglu, S., Deak, F., Kiss, I. and Bruckner, P. (1998) Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol 17, 435-48.
[73] Kobayashi, T., Lyons, K.M., McMahon, A.P. and Kronenberg, H.M. (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A 102, 18023-7.
[74] De Luca, F., Barnes, K.M., Uyeda, J.A., De-Levi, S., Abad, V., Palese, T., Mericq, V. and Baron, J. (2001) Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142, 430-6.
[75] Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., Takemoto, S., Ohuchi, H., Noji, S. and Kurisu, K. (1998) Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J Cell Biol 140, 409-18.
[76] Li, T.F., Dong, Y., Ionescu, A.M., Rosier, R.N., Zuscik, M.J., Schwarz, E.M., O'Keefe, R.J. and Drissi, H. (2004) Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res 299, 128-36.
[77] Ballock, R.T., Heydemann, A., Wakefield, L.M., Flanders, K.C., Roberts, A.B. and Sporn, M.B. (1993) TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol 158, 414-29.
[78] D'Angelo, M. and Pacifici, M. (1997) Articular chondrocytes produce factors that inhibit maturation of sternal chondrocytes in serum-free agarose cultures: a TGF-beta independent process. J Bone Miner Res 12, 1368-77.
[79] Dong, Y., Drissi, H., Chen, M., Chen, D., Zuscik, M.J., Schwarz, E.M. and O'Keefe, R.J. (2005) Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem 95, 1057-68.
[80] Yang, X., Chen, L., Xu, X., Li, C., Huang, C. and Deng, C.X. (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 153, 35-46.
[81] Gomes, R.R., Jr., Farach Carson, M.C. and Carson, D.D. (2003) Perlecan-stimulated nodules undergo chondrogenic maturation in response to rhBMP-2 treatment in vitro. Connect Tissue Res 44 Suppl 1, 196-201.
[82] Steinert, A., Weber, M., Dimmler, A., Julius, C., Schutze, N., Noth, U., Cramer, H., Eulert, J., Zimmermann, U. and Hendrich, C. (2003) Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh-viscosity alginate. J Orthop Res 21, 1090-7.
[83] Schmitt, B., Ringe, J., Haupl, T., Notter, M., Manz, R., Burmester, G.R., Sittinger, M. and Kaps, C. (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71, 567-77.
[84] Drissi, H., Zuscik, M., Rosier, R. and O'Keefe, R. (2005) Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med 26, 169-79.
[85] Gouttenoire, J., Valcourt, U., Ronziere, M.C., Aubert-Foucher, E., Mallein-Gerin, F. and Herbage, D. (2004) Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology 41, 535-42.
[86] Nishimoto, S., Takagi, M., Wakitani, S., Nihira, T. and Yoshida, T. (2005) Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. J Biosci Bioeng 100, 123-6.
[87] van Beuningen, H.M., Glansbeek, H.L., van der Kraan, P.M. and van den Berg, W.B. (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6, 306-17.
[88] Kino-Oka, M., Maeda, Y., Yamamoto, T., Sugawara, K. and Taya, M. (2005) A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage. J Biosci Bioeng 99, 197-207.
[89] Grassi, G., Kohn, H., Dapas, B., Farra, R., Platz, J., Engel, S., Kandolf, R., Teutsch, C., Klima, R., Triolo, G. and Kuhn, A. (2006) Comparison between recombinant baculo- and adenoviral-vectors as transfer system in cardiovascular cells. Arch Virol 151, 255-71.