簡易檢索 / 詳目顯示

研究生: 楊博淵
Yang, Po-Yuan
論文名稱: 金屬奈米粒子的研究:形狀控制以及異質結構的合成於光催化反應應用
The Study of Metal Nanoparticles :Shape Control and Synthesis of Heterostructures on Photocatalytic Reaction
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 湯學成
Tang, Shiue-Cheng
曾院介
Tseng, Yuan-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 奈米粒子形狀演化
外文關鍵詞: nanoparticles, copper, morphological evolution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由有機熱溶劑合成銅/氧化鋅異質結構,並由熱注射法將奈米成核與生長的過程分開,進而得到尺寸均一的奈米粒子。我們探討反應溫度及注射方式的改變對於銅/氧化鋅異質結構的影響。藉由調整這些變因,我們利用氯化銅以及醋酸鋅於油胺還原下,合成出銅粒徑約40奈米、氧化鋅殼層厚度約4奈米之高結晶性異質結構,並經由表面改質轉移至水相,應用於光催化反應上。我們建立在實驗室已完成金/硒化鎘異質結構之合成下,更進一步分析其殼層結構,並利用硝酸鎘及硼氫化鈉成功的控制其硒化鎘殼層厚度,並分析吸收值以及螢光訊號之檢測,並進行雙光子冷光顯影以及光催化反應之測試,探討核殼結構對硒化鎘在光學方面的影響與應用。
    利用磷酸三辛酯(TOP)以及油胺於高溫下還原氯化亞銅,藉由調整氯化亞銅之濃度以及反應時間調整其反應程度,成功製備出形狀演化上的銅奈米粒子。其產物我們觀察X光繞射圖譜分析各結晶面之情形,以及檢測吸收值來確定其光學性質,並藉由掃描式電子顯微鏡觀察其表面影像,以及穿隧式電子顯微鏡觀看其投影影像,精確分析其的表面形狀及其演化上的合理性。


    We synthesize copper/zinc oxide heterostructures (Cu/ZnO) by thermal decomposition methods and separate the nucleation and growth process by hot injection method, and then obtaining the nanoparticles with the almost same size. We work on the influence of different reaction temperature and the type of injection. By controlling both of the factors, we can synthesize highly crystalline heterostructures with copper nanoparticles of forty nanometers and the zinc oxide shell of the thickness of four nanometers. We transfer Cu/ZnO into water phase, and alloy to the photocatalttic reaction. We are based on the done work of the synthesis of gold/cadmium selenide heterostructures, analyzing further the shell structure. We use cadmium nitrate and sodium borohydride to control the CdSe shell thickness, and analyze the absorption values and measure the photoluminescence signal. In addition we measure two-photon luminescence imaging as well as the photocatalytic reaction.
    We use TOP and oleylamine to reduce copper chloride at high temperature. By tuning the concentration of copper chloride and the reaction time to prepare copper nanocrystals with morphology evolution.We observe X-ray diffraction patterns to analyze the crystalline structure, and observe absorption values to determine optical properties. Analyzing SEM images and TEM images to Analyze the surface morphology and the rationality of its evolution.

    中文摘要 ............................................... I Abstract ............................................. II 誌謝 .................................................. III 目錄 .................................................. IV 圖目錄 ................................................. VI 表目錄 ................................................. XI 第一章 緒論 ............................................. 1 1-1奈米材料 ............................................. 1 1-2奈米粒子於有機溶劑中合成 ................................ 2 1-3銅奈米粒子發展 ........................................ 4 1-4金奈米粒子發展 ........................................ 7 第二章 異質結構的合成於光催化反應應用 ......................... 9 一、 文獻回顧 ............................................ 9 1-1奈米異質結構特性 ....................................... 9 1-2 金奈米柱於雙光子誘發螢光之檢測 .......................... 10 1-3 金屬/半導體異質結構合成 ................................ 11 1-4 金屬/半導體異質結構於光催化應用 .......................... 12 1-5 已完成金/硒化鎘異質結構之合成 ............................ 15 1-6 實驗動機 ............................................. 20 二、 實驗內容 ............................................. 21 2-1銅/氧化鋅異質結構的合成於光催化反應應用 ..................... 21 2-1.1實驗藥品 ............................................ 21 2-1.2實驗步驟 ............................................ 21 2-1.3實驗儀器 ............................................ 23 2-2金/硒化鎘異質結構合成於光催化反應應用 ....................... 23 2-2.1實驗藥品 ............................................ 23 2-2.2 實驗步驟 ........................................... 24 2-2.3實驗儀器 ............................................ 25 三、 結果與討論 ............................................ 27 3-1銅/氧化鋅異質結構的合成於光催化反應應用 ..................... 27 3-1.1銅/氧化鋅異質結構的特性描述.............................. 27 3-1.2 反應溫度對於銅/氧化鋅異質結構合成的影響 .................. 30 3-1.3注射方式對於銅/氧化鋅異質結構合成的影響 ................... 31 3-1.4 銅/氧化鋅異質結構的分析與探討 .......................... 32 3-1.5 銅/氧化鋅異質結構的表面改質............................ 34 3-1.6 銅/氧化鋅異質結構於紫外光催化下進行亞甲基藍的脫色測試 ....... 35 3-1.7 銅/氧化鋅異質結構之結論 ............................... 40 3-2金/硒化鎘異質結構的合成於光催化反應應用 ..................... 41 3-2.1金/硒化鎘異質結構的合成與鑑定 ........................... 41 3-2.2控制硒化鎘殼層厚度之金/硒化鎘異質結構合成 .................. 45 3-2.3金/硒化鎘異質結構之光學性質以及雙光子冷光顯影 ............... 47 3-2.4金/硒化鎘異質結構於光催化反應應用 ........................ 50 3-2.5 金/硒化鎘異質結構之結論 ............................... 51 第三章 合成以八面體為基礎的銅奈米粒子之形狀控制 .................. 52 一、 文獻回顧 ............................................. 52 2-1實驗動機 .............................................. 60 二、 實驗部分 ............................................. 61 2-1 實驗藥品 ............................................. 61 2-2實驗步驟 .............................................. 61 2-3實驗儀器 .............................................. 62 三、 結果與討論 ........................................... 63 四、 結論 ................................................ 77 第四章 參考文獻 ........................................... 78

    1. Jun, Y.-w.; Choi, J.-s.; Cheon, J., Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angewandte Chemie International Edition 2006, 45 (21), 3414-3439.
    2. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.
    3. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715.
    4. Qu, L.; Peng, Z. A.; Peng, X., Alternative Routes toward High Quality CdSe Nanocrystals. Nano Letters 2001, 1 (6), 333-337.
    5. Pan, D.; Wang, X.; Zhou, Z. H.; Chen, W.; Xu, C.; Lu, Y., Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps. Chemistry of Materials 2009, 21 (12), 2489-2493.
    6. Hines, M. A.; Guyot-Sionnest, P., Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. The Journal of Physical Chemistry B 1998, 102 (19), 3655-3657.
    7. Choi, J.; Kang, N.; Yang, H. Y.; Kim, H. J.; Son, S. U., Colloidal Synthesis of Cubic-Phase Copper Selenide Nanodiscs and Their Optoelectronic Properties. Chemistry of Materials 2010, 22 (12), 3586-3588.
    8. Edwards, P. P.; Thomas, J. M., Gold in a Metallic Divided State—From Faraday to Present-Day Nanoscience. Angewandte Chemie International Edition 2007, 46 (29), 5480-5486.
    9. Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E., Heterogeneous Seeded Growth: A Potentially General Synthesis of Monodisperse Metallic Nanoparticles. Journal of the American Chemical Society 2001, 123 (37), 9198-9199.
    10. Tanori, J.; Pileni, M. P., Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template. Langmuir 1997, 13 (4), 639-646.
    11. Wu, S.-H.; Chen, D.-H., Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science 2004, 273 (1), 165-169.
    12. Filankembo, A.; Pileni, M. P., Is the Template of Self-Colloidal Assemblies the Only Factor That Controls Nanocrystal Shapes? The Journal of Physical Chemistry B 2000, 104 (25), 5865-5868.
    13. Pastoriza-Santos, I.; Sánchez-Iglesias, A.; Rodríguez-González, B.; Liz-Marzán, L. M., Aerobic Synthesis of Cu Nanoplates with Intense Plasmon Resonances. Small 2009, 5 (4), 440-443.
    14. Wu, C.; Mosher, B.; Zeng, T., One-step green route to narrowly dispersed copper nanocrystals. Journal of Nanoparticle Research 2006, 8 (6), 965-969.
    15. Zhang, H.-X.; Siegert, U.; Liu, R.; Cai, W.-B., Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent. Nanoscale Research Letters 2009, 4 (7), 705-708.
    16. Holmes, J. D.; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A., Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions. Journal of the American Chemical Society 2001, 123 (16), 3743-3748.
    17. Spanhel, L.; Anderson, M. A., Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society 1991, 113 (8), 2826-2833.
    18. Liu, X.; Geng, B.; Du, Q.; Ma, J.; Liu, X., Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route. Materials Science and Engineering: A 2007, 448 (1–2), 7-14.
    19. Kim, Y. H.; Lee, D. K.; Jo, B. G.; Jeong, J. H.; Kang, Y. S., Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 284–285 (0), 364-368.
    20. Mott, D.; Galkowski, J.; Wang, L.; Luo, J.; Zhong, C.-J., Synthesis of Size-Controlled and Shaped Copper Nanoparticles. Langmuir 2007, 23 (10), 5740-5745.
    21. Shukla, R.; Hill, E.; Shi, X.; Kim, J.; Muniz, M. C.; Sun, K.; Baker, J. R., Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 2008, 4 (11), 2160-2163.
    22. Shen, M.; Shi, X., Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2010, 2 (9), 1596-1610.
    23. Daniel, M.-C.; Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews 2003, 104 (1), 293-346.
    24. Peyser, L. A.; Lee, T.-H.; Dickson, R. M., Mechanism of Agn Nanocluster Photoproduction from Silver Oxide Films. The Journal of Physical Chemistry B 2002, 106 (32), 7725-7728.
    25. Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A., The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chemical Physics Letters 2000, 317 (6), 517-523.
    26. Wilcoxon, J. P.; Martin, J. E.; Provencio, P., Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography. Langmuir 2000, 16 (25), 9912-9920.
    27. Bouhelier, A.; Beversluis, M. R.; Novotny, L., Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters 2003, 83 (24), 5041-5043.
    28. Beversluis, M. R.; Bouhelier, A.; Novotny, L., Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Physical Review B 2003, 68 (11), 115433.
    29. Drachev, V. P.; Khaliullin, E. N.; Kim, W.; Alzoubi, F.; Rautian, S. G.; Safonov, V. P.; Armstrong, R. L.; Shalaev, V. M., Quantum size effect in two-photon excited luminescence from silver nanoparticles. Physical Review B 2004, 69 (3), 035318.
    30. Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101 (34), 6661-6664.
    31. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research 2008, 41 (12), 1578-1586.
    32. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B 2006, 110 (14), 7238-7248.
    33. Li, C.-Z.; Male, K. B.; Hrapovic, S.; Luong, J. H. T., Fluorescence properties of gold nanorods and their application for DNA biosensing. Chemical Communications 2005, (31), 3924-3926.
    34. Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews 2006, 35 (3), 209-217.
    35. Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J.-X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (44), 15752-15756.
    36. Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X., Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced Materials 2007, 19 (20), 3136-3141.
    37. Gluodenis, M.; Foss, C. A., The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs. The Journal of Physical Chemistry B 2002, 106 (37), 9484-9489.
    38. Ling, B.; Wen, Y.; Yu, Z.; Yu, Y.; Yang, H., Multifunctional magnetic nanocomposites: separation, photodecomposition and Raman detection. Journal of Materials Chemistry 2011, 21 (12), 4623-4628.
    39. Jakob, M.; Levanon, H.; Kamat, P. V., Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters 2003, 3 (3), 353-358.
    40. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2−Au Composite Nanoparticles. Langmuir 2002, 19 (2), 469-474.
    41. Tian, Y.; Tatsuma, T., Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society 2005, 127 (20), 7632-7637.
    42. Abe, R.; Takami, H.; Murakami, N.; Ohtani, B., Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide. Journal of the American Chemical Society 2008, 130 (25), 7780-7781.
    43. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Letters 2003, 3 (4), 555-560.
    44. Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A., Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 2004, 3 (9), 601-605.
    45. Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U., Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods. Science 2004, 304 (5678), 1787-1790.
    46. Hasobe, T.; Kamat, P. V.; Troiani, V.; Solladié, N.; Ahn, T. K.; Kim, S. K.; Kim, D.; Kongkanand, A.; Kuwabata, S.; Fukuzumi, S., Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrin−Peptide Oligomers with Fullerene Clusters. The Journal of Physical Chemistry B 2004, 109 (1), 19-23.
    47. Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.; Park, H.; Lukin, M. D., Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007, 450 (7168), 402-406.
    48. Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A., Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat Mater 2007, 6 (4), 291-295.
    49. Dawson, A.; Kamat, P. V., Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles. The Journal of Physical Chemistry B 2001, 105 (5), 960-966.
    50. Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir 1998, 15 (3), 701-709.
    51. Menagen, G.; Mocatta, D.; Salant, A.; Popov, I.; Dorfs, D.; Banin, U., Selective Gold Growth on CdSe Seeded CdS Nanorods. Chemistry of Materials 2008, 20 (22), 6900-6902.
    52. Lee, J.-S.; Shevchenko, E. V.; Talapin, D. V., Au−PbS Core−Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer. Journal of the American Chemical Society 2008, 130 (30), 9673-9675.
    53. Sun, Z.; Yang, Z.; Zhou, J.; Yeung, M. H.; Ni, W.; Wu, H.; Wang, J., A General Approach to the Synthesis of Gold–Metal Sulfide Core–Shell and Heterostructures. Angewandte Chemie International Edition 2009, 48 (16), 2881-2885.
    54. Chen, W.-T.; Yang, T.-T.; Hsu, Y.-J., Au-CdS Core−Shell Nanocrystals with Controllable Shell Thickness and Photoinduced Charge Separation Property. Chemistry of Materials 2008, 20 (23), 7204-7206.
    55. Li, G.; Kako, T.; Wang, D.; Zou, Z.; Ye, J., Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. Journal of Physics and Chemistry of Solids 2008, 69 (10), 2487-2491.
    56. Gouvêa, C. A. K.; Wypych, F.; Moraes, S. G.; Durán, N.; Nagata, N.; Peralta-Zamora, P., Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 2000, 40 (4), 433-440.
    57. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95 (1), 69-96.
    58. Vinodgopal, K.; Bedja, I.; Kamat, P. V., Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chemistry of Materials 1996, 8 (8), 2180-2187.
    59. Vinodgopal, K.; Hotchandani, S.; Kamat, P. V., Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. The Journal of Physical Chemistry 1993, 97 (35), 9040-9044.
    60. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.
    61. Chandrasekharan, N.; Kamat, P. V., Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles†. The Journal of Physical Chemistry B 2000, 104 (46), 10851-10857.
    62. Subramanian, V.; Wolf, E.; Kamat, P. V., Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films? The Journal of Physical Chemistry B 2001, 105 (46), 11439-11446.
    63. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D., Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution. Journal of the American Chemical Society 2004, 126 (12), 3868-3879.
    64. Hirakawa, T.; Kamat, P. V., Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters under UV−Irradiation. Journal of the American Chemical Society 2005, 127 (11), 3928-3934.
    65. Cozzoli, P. D.; Fanizza, E.; Comparelli, R.; Curri, M. L.; Agostiano, A.; Laub, D., Role of Metal Nanoparticles in TiO2/Ag Nanocomposite-Based Microheterogeneous Photocatalysis. The Journal of Physical Chemistry B 2004, 108 (28), 9623-9630.
    66. Kamat, P. V.; Shanghavi, B., Interparticle Electron Transfer in Metal/Semiconductor Composites. Picosecond Dynamics of CdS-Capped Gold Nanoclusters. The Journal of Physical Chemistry B 1997, 101 (39), 7675-7679.
    67. Georgekutty, R.; Seery, M. K.; Pillai, S. C., A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. The Journal of Physical Chemistry C 2008, 112 (35), 13563-13570.
    68. Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U., Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets. Advanced Materials 2008, 20 (22), 4312-4317.
    69. Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L.-W.; Alivisatos, A. P., Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Journal of the American Chemical Society 2009, 131 (14), 5285-5293.
    70. Smith, D. K.; Miller, N. R.; Korgel, B. A., Iodide in CTAB Prevents Gold Nanorod Formation. Langmuir 2009, 25 (16), 9518-9524.
    71. Eustis, S.; El-Sayed, M., Aspect Ratio Dependence of the Enhanced Fluorescence Intensity of Gold Nanorods: Experimental and Simulation Study. The Journal of Physical Chemistry B 2005, 109 (34), 16350-16356.
    72. Liu; Guyot-Sionnest, P., Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods. The Journal of Physical Chemistry B 2004, 108 (19), 5882-5888.
    73. Son, D. H.; Hughes, S. M.; Yin, Y.; Paul Alivisatos, A., Cation Exchange Reactions in Ionic Nanocrystals. Science 2004, 306 (5698), 1009-1012.
    74. Hankare, P. P.; Bhuse, V. M.; Garadkar, K. M.; Delekar, S. D.; Mulla, I. S., Low temperature route to grow polycrystalline cadmium selenide and mercury selenide thin films. Materials Chemistry and Physics 2003, 82 (3), 711-717.
    75. Liu, M.; Guyot-Sionnest, P., Preparation and optical properties of silver chalcogenide coated gold nanorods. Journal of Materials Chemistry 2006, 16 (40), 3942-3945.
    76. Zhang, J.; Tang, Y.; Lee, K.; Ouyang, M., Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science 2010, 327 (5973), 1634-1638.
    77. Fan, F.-R.; Ding, Y.; Liu, D.-Y.; Tian, Z.-Q.; Wang, Z. L., Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals. Journal of the American Chemical Society 2009, 131 (34), 12036-12037.
    78. Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K., Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface Science 2011, 605 (15–16), 1354-1359.
    79. Huang, Z. Y.; Barber, T.; Mills, G.; Morris, M. B., Heterogeneous Photopolymerization of Methyl Methacrylate Initiated by Small ZnO Particles. The Journal of Physical Chemistry 1994, 98 (48), 12746-12752.
    80. Bennema, P.; Liu, X. Y.; Lewtas, K.; Tack, R. D.; Rijpkema, J. J. M.; Roberts, K. J., Morphology of orthorhombic long chain normal alkanes: theory and observations. Journal of Crystal Growth 1992, 121 (4), 679-696.
    81. Li, M.; Yu, X.-F.; Liang, S.; Peng, X.-N.; Yang, Z.-J.; Wang, Y.-L.; Wang, Q.-Q., Synthesis of Au–CdS Core–Shell Hetero-Nanorods with Efficient Exciton–Plasmon Interactions. Advanced Functional Materials 2011, 21 (10), 1788-1794.
    82. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y., A general strategy for nanocrystal synthesis. Nature 2005, 437 (7055), 121-124.
    83. Yin, Y.; Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437 (7059), 664-670.
    84. Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y., Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Advanced Functional Materials 2009, 19 (2), 189-200.
    85. Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chemistry of Materials 2008, 20 (24), 7570-7574.
    86. Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Oh, W. T.; Park, Q. H.; Han, S.
    W., Polyhedral Au Nanocrystals Exclusively Bound by {110} Facets: The Rhombic Dodecahedron. Journal of the American Chemical Society 2009, 131 (5), 1672-1673.
    87. Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L., Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angewandte Chemie International Edition 2008, 47 (46), 8901-8904.
    88. Niu, W.; Zhang, L.; Xu, G., Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano 2010, 4 (4), 1987-1996.
    89. Chiu, C.-Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C. B.; Huang, Y., Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat Chem 2011, 3 (5), 393-399.
    90. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C., Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes. Journal of the American Chemical Society 2010, 132 (17), 6131-6144.
    91. Liang, X.; Gao, L.; Yang, S.; Sun, J., Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Oxide. Advanced Materials 2009, 21 (20), 2068-2071.
    92. Peng, Z.; Jiang, Y.; Song, Y.; Wang, C.; Zhang, H., Morphology Control of Nanoscale PbS Particles in a Polyol Process. Chemistry of Materials 2008, 20 (9), 3153-3162.
    93. Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z., Facile Synthesis of PbS Truncated Octahedron Crystals with High Symmetry and Their Large-Scale Assembly into Regular Patterns by a Simple Solution Route. ACS Nano 2008, 2 (2), 184-190.
    94. Li, C.; Hong, G.; Qi, L., Nanosphere Lithography at the Gas/Liquid Interface: A General Approach toward Free-Standing High-Quality Nanonets. Chemistry of Materials 2009, 22 (2), 476-481.
    95. Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26 (14), 12307-12313.
    96. Quan, Z.; Fang, J., Superlattices with non-spherical building blocks. Nano Today 2010, 5 (5), 390-411.
    97. Disch, S.; Wetterskog, E.; Hermann, R. l. P.; Sala ar-Alvare , G.; Busch, P.; Br ckel, T.; Bergstr m, L.; Kamali, S., Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes. Nano Letters 2011, 11 (4), 1651-1656.
    98. Tan, Y.; Gu, J.; Zang, X.; Xu, W.; Shi, K.; Xu, L.; Zhang, D., Versatile Fabrication of Intact Three-Dimensional Metallic Butterfly Wing Scales with Hierarchical Sub-micrometer Structures. Angewandte Chemie 2011, 123 (36),8457-8461.
    99. Chen, Y.-X.; Chen, S.-P.; Zhou, Z.-Y.; Tian, N.; Jiang, Y.-X.; Sun, S.-G.; Ding, Y.; Wang, Z. L., Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. Journal of the American Chemical Society 2009, 131 (31), 10860-10862.
    100. Siegfried, M. J.; Choi, K.-S., Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals. Journal of the American Chemical Society 2006, 128 (32), 10356-10357.
    101. Chung, P.-J.; Lyu, L.-M.; Huang, M. H., Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chemistry – A European Journal 2011, 17 (35), 9746-9752.
    102. Yang, C.-W.; Chanda, K.; Lin, P.-H.; Wang, Y.-N.; Liao, C.-W.; Huang, M. H., Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society 2011, 133 (49), 19993-20000.
    103. Seo, D.; Park, J. C.; Song, H., Polyhedral Gold Nanocrystals with Oh Symmetry: From Octahedra to Cubes. Journal of the American Chemical Society 2006, 128 (46), 14863-14870.
    104. Tao, A.; Sinsermsuksakul, P.; Yang, P., Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angewandte Chemie International Edition 2006, 45 (28), 4597-4601.
    105. Kim, D. Y.; Im, S. H.; Park, O. O.; Lim, Y. T., Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids. CrystEngComm 2010, 12 (1), 116-121.
    106. Kuo, C. H.; Chen, C. H.; Huang, M. H., Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials 2007, 17 (18), 3773-3780.
    107. Ho, J.-Y.; Huang, M. H., Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. The Journal of Physical Chemistry C 2009, 113 (32), 14159-14164.
    108. Kuo, C.-H.; Huang, M. H., Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. The Journal of Physical Chemistry C 2008, 112 (47), 18355-18360.
    109. Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P., Pt Nanocrystals: Shape Control and Langmuir−Blodgett Monolayer Formation. The Journal of Physical Chemistry B 2004, 109 (1), 188-193.
    110. Lim, B.; Xiong, Y.; Xia, Y., A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals. Angewandte Chemie 2007, 119 (48), 9439-9442.
    111. Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P., Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat Mater 2012, 11 (2), 131-137.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE