研究生: |
簡孜芸 Chien, Chih-Yun |
---|---|
論文名稱: |
添加第三元素金對BCT麻田散相在鐵鈀鐵磁性記憶合金的影響 |
指導教授: |
胡塵滌
Hu, Chen-Ti |
口試委員: |
胡塵滌
吳錫侃 楊聰仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 形狀記憶合金 、磁致伸縮 、鐵鈀合金 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fe70Pd30鐵磁性形狀記憶合金同時具有良好雙向形狀記憶效應和高磁致伸縮率而受到重視,然而fcc母相至fct麻田散相相變化溫度過低、及容易因低溫和應力效應誘發非熱彈性bct麻田散相,而喪失形狀記憶特性等問題,在應用上一直無法突破。
本研究針對Fe-30at%Pd合金容易誘發非熱彈性bct麻田散相之缺點進行改善,探討添加第三元素Au的Fe70Pd30-xAux(X=4,5,6)塊材試片經熱鍛造、熱輥壓與熱機處理後在抑制低溫及應力誘發生成非熱彈性bct麻田散相的能力、及相變化溫度的變化,並研究微結構、磁性質、磁伸縮值的改變。
Fe70Pd30塊材試片降至液態氮溫度77K時大量產生非熱彈性bct相,反觀添加Au作為第三元素的試片,直至2K低溫都不會產生非熱彈性bct麻田散相,顯示添加Au能有效抑制低溫所造成的bct生成。並且,Fe70Pd30試片在受機械研磨之小應力下即生成非熱彈性bct相,而添加Au作為第三元素的試片,在機械研磨後仍維持機械研磨前的相組成,說明添加Au能有效抑制應力誘發bct相生成。此種抑制非熱彈性bct相的性質將大幅提昇Fe-30at%Pd合金加工應用的機會。
而Au的添加可提高合金fcc-fct相變化溫度,其中尤以添加5% Au效果最佳,可提升麻田散相變化溫度Ms約45K,並可得最低晶格常數(c/a)比值為0.93。
磁性質部分,飽和磁化量以Fe70Pd30最高,Fe70Pd24Au6最低;矯頑磁場變化趨勢則以Fe70Pd25Au5最高,Fe70Pd30最低 ; 磁伸縮值以Fe70Pd25Au5的723.7 ppm最高。
[1] V. V. Kokorin and M. Wuttig, "Magnetostriction in ferromagnetic shape memory alloys," Journal of Magnetism and Magnetic Materials, vol. 234, pp. 25-30, 2001.
[2] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, "Large magnetic-field-induced strains in Ni2MnGa single crystals," Applied Physics Letters, vol. 69, pp. 1966-1968, 1996.
[3] T. Kakeshita, K.Shimizu, S.Funada, and M.Date, "Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys," Transactions of the JAPAN Institute of Metals, vol. 25, pp. 837-844, 1984.
[4] L. C. Chang and T. A. Read, "Plastic Deformation and Diffusionless Phase Change in Metal. The Gold-Cadmium Beta Phase," Trans. A.I.M.E., vol. 189, pp. 47-52, 1951.
[5] C. M. Wayman, "Some Applications of Shape-memory Alloys," Journal of Metals, vol. 32, pp. 129-137, 1980.
[6] M. Shuichi and O. Kazuhiro, "Development of Shape Memory Alloys," ISIJ International, vol. 29, pp. 353-377, 1989.
[7] L. M. Schetky, "Shape Memory Alloys," Scientific American, vol. 241, pp. 74-82, 1979.
[8] Y. Furuya, N. W. Hagood, H. Kimura, and T. Watanabe, "Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6at%Pd Alloy," Mater. Trans. JIM (Jpn Inst Met), vol. 39, No.12, pp. 1248-1254, 1998.
[9] T. Edler, S. Hamann, A. Ludwig, and S. G. Mayr, "Reversible fcc ↔ bcc transformation in freestanding epitaxially grown Fe–Pd ferromagnetic shape memory films," Scripta Materialia, vol. 64, pp. 89-92, 2011.
[10] T. Edler and S. G. Mayr, "Film Lift-Off from MgO: Freestanding Single Crystalline Fe–Pd Films Suitable for Magnetic Shape Memory Actuation – and Beyond," Advanced Materials, vol. 22, pp. 4969-4972, 2010.
[11] S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley, and T. A. Lograsso, "6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni--Mn--Ga," Applied Physics Letters, vol. 77, pp. 886-888, 2000.
[12] C. T. Hu, T. Goryczka, and D. Vokoun, "Effects of the spinning wheel velocity on the microstructure of Fe–Pd shape memory melt-spun ribbons," Scripta Materialia, vol. 50, pp. 539-542, 2004.
[13] 余俊彥, "FePdPt, FePdAu 鐵磁性形狀記憶合金磁性質及形狀記憶效應研究," 國立清華大學碩士論文, vol. 3, pp. 47-120, 2005.
[14] L. Delaey, R. V. Krishnan, H. Tas, and H. Warlimont, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 1 Structural and microstructural changes associated with the transformations," Journal of Materials Science, vol. 9, pp. 1521-1535, 1974.
[15] R. V. Krishnan, L. Delaey, H. Tas, and H. Warlimont, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 2 Macroscopic Mechanical-Behavior," Journal of Materials Science, vol. 9, pp. 1536-1544, 1974.
[16] H. Warlimont, L. Delaey, R. V. Krishnan, and H. Tas, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 3 Thermodynamics and Kinetics " Journal of Materials Science, vol. 9, pp. 1545-1555, 1974.
[17] T. Tadaki, K. Otsuka, and K. Shimizu, "Shape Memory Alloys," Annual Review of Materials Science, vol. 18, pp. 25-45, 1988.
[18] D. P. Dunne and C. M. Wayman, "Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features," Metallurgical Transactions, vol. 4, pp. 147-152, 1973.
[19] T. A. Schroder and C. M. Wayman, "Two-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals," Scripta Metallurgica, vol. 11, pp. 225-230, 1977.
[20] D. Gignoux and M. Schlenker, "MagnetismⅠ Fundamantals," vol. 3, 12, pp. 79-103, 351-396, 2002.
[21] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, "Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions," Smart Mater. Struct., vol. 14, pp. 261-265, 2005.
[22] J. Cui, T. W. Shield, and R. D. James, "Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape-memory alloy," Acta Materialia, vol. 52, pp. 35-47, 2004.
[23] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Ouladdiaf, "Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In," Physical Review B, vol. 75, p. 104414, 2007.
[24] K. Ullakko, J. K. Huang, R. C. O'Handley, and V. V. Kokorin, "Magnetically controlled shape memory effect in Ni2MnGa intermetallics," Scripta Materialia, vol. 36, pp. 1133-1138, 1997.
[25] K. Ullakko, "Magnetically controlled shape memory alloys: A new class of actuator materials," Journal of Materials Engineering and Performance, vol. 5, pp. 405-409, 1996.
[26] 金重勳主編, "磁性技術手冊," vol. 31, pp. 409-419, 2002.
[27] K. Tanaka, T. Ichitsubo, and M. Koiwa, "Effect of external fields on ordering of FePd," Materials Science and Engineering: A, vol. 312, pp. 118-127, 2001.
[28] P. R. Aitchison, J. N. Chapman, V. Gehanno, I. S. Weir, M. R. Scheinfein, S. McVitie, and A. Marty, "High resolution measurement and modelling of magnetic domain structures in epitaxial FePd L10 films with perpendicular magnetisation," Journal of Magnetism and Magnetic Materials, vol. 223, pp. 138-146, 2001.
[29] T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi, and F. Abe, "Theoretical investigation of L10-disorder phase equilibria in Fe–Pd alloy system," Journal of Alloys and Compounds, vol. 317–318, pp. 13-18, 2001.
[30] L. Wang, Z. Fan, and D. E. Laughlin, "Trace analysis for magnetic domain images of L10 polytwinned structures," Scripta Materialia, vol. 47, pp. 781-785, 2002.
[31] J. G. Ha, I. S. Chung, J. G. Kang, H. W. An, J. H. Koh, S. M. Koo, Y. H. Cho, S. Y. Park, M. H. Jung, and J. G. Kim, "Structure and magnetic anisotropy in L10 ordered FePd thin films," physica status solidi (a), vol. 204, pp. 4045-4048, 2007.
[32] J. G. Kang, J. G. Ha, J. H. Koh, S. M. Koo, M. Kamiko, S. Mitani, Y. Sakuraba, K. Takanashi, S. T. Bae, and H. J. Yeom, "Atomic ordering and magnetic properties of polycrystalline L10-FePd dot arrays," Physica B: Condensed Matter, vol. 405, pp. 3149-3153, 2010.
[33] T. Kakeshita and K. Ullakko, "Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys," MRS Bulletin, vol. 27, pp. 105-109, 2002.
[34] J. Buschbeck, O. Heczko, A. Ludwig, S. Fahler, and L. Schultz, "Magnetic properties of epitaxial Fe--Pd films measured at elevated temperatures," Journal of Applied Physics, vol. 103, p. 07B334, 2008.
[35] C. Bechtold, J. Buschbeck, A. Lotnyk, B. Erkartal, S. Hamann, C. Zamponi, L. Schultz, A. Ludwig, L. Kienle, S. Fähler, and E. Quandt, "Artificial Single Variant Martensite in Freestanding Fe70Pd30 Films Obtained by Coherent Epitaxial Growth," Advanced Materials, vol. 22, pp. 2668-2671, 2010.
[36] 王怡文, "Fe-Pd 鐵磁性形狀記憶合金添加第三元素之研究," 國立清華大學碩士論文, vol. 3, pp. 39-64, 2004.
[37] I. Kock, S. Hamann, H. Brunken, T. Edler, S. G. Mayr, and A. Ludwig, "Development and characterization of Fe70Pd30 ferromagnetic shape memory splats," Intermetallics, vol. 18, pp. 877-882, 2010.
[38] M. Sugiyama, R. Oshima, and F. E. Fujita, "Martensitic-Transformation in the Fe-Pd Alloy System," Transactions of the JAPAN Institute of Metals, vol. 25, pp. 585-592, 1984.
[39] T. Sohmura, R. Oshima, and F. E. Fujita, "Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy," Scripta Metallurgica, vol. 14, pp. 855-856, 1980.
[40] R. Oshima, "Successive Martensitic Transformations in Fe-Pd Alloys," Scripta Metallurgica, vol. 15, pp. 829-833, 1981.
[41] K. Seki, H. Kura, T. Sato, and T. Taniyama, "Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd," Journal of Applied Physics, vol. 103, p. 063910, 2008.
[42] M. Sugiyama, R. Oshima, and F. E. Fujita, "Mechanism of FCC-FCT Thermoelastic Martensite Transformation in Fe-Pd Alloys," Transactions of the JAPAN Institute of Metals, vol. 27, pp. 719-730, 1986.
[43] H. Kato, Y. Liang, and M. Taya, "Stress-induced FCC/FCT phase transformation in Fe–Pd alloy," Scripta Materialia, vol. 46, pp. 471-475, 2002.
[44] J. Felten, T. Kinkus, A. Reid, G. Olson, and J. Cohen, "Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd alloys," Metallurgical and Materials Transactions A, vol. 28, pp. 527-536, 1997.
[45] J. Cui and R. D. James, "Study of Fe3Pd and related alloys for ferromagnetic shape memory," IEEE Transactions on Magnetics, vol. 37, pp. 2675-2677, 2001.
[46] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya, and T. Mori, "Martensite structure in polycrystalline Fe–Pd," Materials Science and Engineering: A, vol. 332, pp. 134-139, 2002.
[47] Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya, and T. Mori, "Straining of a polycrystal of Fe–Pd with martensite structure by uniaxial loading," Materials Science and Engineering: A, vol. 338, pp. 89-96, 2002.
[48] M. Matsui, T. Shimizu, H. Yamada, and K.Adachi, "Magnetic-Properties and Thermal-Expansion of Fe-Pd Invar- Alloys," Journal of Magnetism and Magnetic Materials, vol. 15-18, pp. 1201-1202, 1980.
[49] E. C. Bain, "The nature of martensite," Trans AIME Steel Div, vol. 70, p. 25, 1924.
[50] 賴耿陽, "形狀記憶合金," 復漢出版社, vol. 1, pp. 1-44, 1999.
[51] J. Buschbeck, I. Opahle, M. Richter, U. K. Rößler, P. Klaer, M. Kallmayer, H. J. Elmers, G. Jakob, L. Schultz, and S. Fähler, "Full Tunability of Strain along the fcc-bcc Bain Path in Epitaxial Films and Consequences for Magnetic Properties," Physical Review Letters, vol. 103, p. 216101, 2009.
[52] T. Kubota, T. Okazaki, H. Kimura, T. Watanabe, M. Wuttig, and Y. Furuya, "Effect of rapid solidification on giant magnetostriction in ferromagnetic shape memory iron-based alloys," Sci. Technol. Adv. Mater., vol. 3, pp. 201-207, 2002.
[53] S. Inoue, K. Inoue, K. Koterazawa, and K. Mizuuchi, "Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering," Materials Science and Engineering: A, vol. 339, pp. 29-34, 2003.
[54] S. Inoue, K. Inoue, S. Fujita, and K. Koterazawa, "Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering," Materials Transactions, vol. 44, pp. 298-304, 2003.
[55] D. Vokoun and C. T. Hu, "Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons," Scripta Materialia, vol. 47, pp. 453-457, 2002.
[56] D. Vokoun and C. T. Hu, "Improvement of shape memory characteristics in Fe–Pd melt-spun shape memory ribbons," Journal of Alloys and Compounds, vol. 346, pp. 147-153, 2002.
[57] R. D. James and M. Wuttig, "Magnetostriction of martensite," Philosophical Magazine A, vol. 77, pp. 1273-1299, 1998/05/01 1998.
[58] J. Koeda, Y. Nakamura, T. Fukuda, T. Kakeshita, T. Takeuchi, and K. Kishio, "Giant magnetostriction in Fe-Pd alloy single crystal exhibiting martensitic transformation," Trans. Mat. Res. Soc. Jap., vol. 26, pp. 215-217, 2001.
[59] T. Kubota, T. Okazaki, Y. Furuya, and T. Watanabe, "Large magnetostriction in rapid-solidified ferromagnetic shape memory Fe–Pd alloy," Journal of Magnetism and Magnetic Materials, vol. 239, pp. 551-553, 2002.
[60] H. Y. Yasuda, N. Komoto, M. Ueda, and Y. Umakoshi, "Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys," Sci. Technol. Adv. Mater., vol. 3, pp. 165-169, 2002.
[61] T. Okazaki, H. Nakajima, and Y. Furuya, "Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon under Tensile Stress," Materials Transactions, vol. 44, pp. 665-668, 2003.
[62] Y. Liang, Y. Sutou, T. Wada, C.-C. Lee, M. Taya, and T. Mori, "Magnetic field-induced reversible actuation using ferromagnetic shape memory alloys," Scripta Materialia, vol. 48, pp. 1415-1419, 2003.
[63] R. A. Stern, S. D. Willoughby, A. Ramirez, J. M. MacLaren, J. Cui, Q. Pan, and R. D. James, "Electronic and structural properties of Fe3Pd--Pt ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 91, pp. 7818-7820, 2002.
[64] T. Wada, T. Tagawa, and M. Taya, "Martensitic transformation in Pd-rich Fe–Pd–Pt alloy," Scripta Materialia, vol. 48, pp. 207-211, 2003.
[65] K. Tsuchiya, T. Nojiri, H. Ohtsuka, and M. Umemoto, "Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys," Materials Transactions, vol. 44, No.12, pp. 2499-2502, 2003.
[66] Y.-C. Lin, C.-F. Lin, J.-B. Yang, and H.-T. Lee, "Microstructures and magnetostriction of two-phase Fe66-Pd30-Ni4 high-temperature ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 109, pp. 07A912-07A912-3, 2011.
[67] V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, M. A. González, and J. A. Rodríguez-Velamazán, "Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys," Acta Materialia, vol. 57, pp. 4224-4232, 2009.
[68] S. U. Jen, Y.-T. Chen, T. L. Tsai, and Y. C. Lin, "Magnetostrictive strains in polycrystalline FePdRh alloy," Journal of Applied Physics, vol. 103, pp. 07B902-07B902-3, 2008.
[69] Y.-C. Lin and H.-T. Lee, "Magnetostriction and magnetic structure in annealed recrystallization of strain-forged ferromagnetic shape memory Fe-Pd-Rh alloys," Journal of Applied Physics, vol. 107, pp. 09D312-09D312-3, 2010.
[70] S. Hamann, M. E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S. G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fähler, P. Entel, and A. Ludwig, "The ferromagnetic shape memory system Fe–Pd–Cu," Acta Materialia, vol. 58, pp. 5949-5961, 2010.
[71] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, "Magnetostrictive and shape memory properties of Fe–Pd alloys with Co and Pt additions," Smart Materials and Structures, vol. 14, p. S261, 2005.
[72] R. C. O'Handley, "Model for strain and magnetization in magnetic shape-memory alloys," Journal of Applied Physics, vol. 83, pp. 3263-3270, 1998.
[73] S. J. Murray, R. C. O'Handley, and S. M. Allen, "Model for discontinuous actuation of ferromagnetic shape memory alloy under stress," Journal of Applied Physics, vol. 89, pp. 1295-1301, 2001.
[74] N. I. Glavatska, A. A. Rudenko, I. N. Glavatskiy, and V. A. L'Vov, "Statistical model of magnetostrain effect in martensite," Journal of Magnetism and Magnetic Materials, vol. 265, pp. 142-151, 2003.
[75] A. A. Likhachev and K. Ullakko, "Quantitative model of large magnetostrain effect in ferromagnetic shapell memory alloys," Eur. Phys. J. B, vol. 14, pp. 263-267, 2000/03/01 2000.
[76] P. Mullner, V. A. Chernenko, M. Wollgarten, and G. Kostorz, "Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields," Journal of Applied Physics, vol. 92, pp. 6708-6713, 2002.
[77] A. N. Bogdanov, A. DeSimone, S. Müller, and U. K. Rößler, "Phenomenological theory of magnetic-field-induced strains in ferromagnetic shape-memory materials," Journal of Magnetism and Magnetic Materials, vol. 261, pp. 204-209, 2003.
[78] D. I. Paul, J. Marquiss, and D. Quattrochi, "Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 93, pp. 4561-4565, 2003.
[79] A. Desimone and R. D. James, "Energetics of magnetoelastic domains in ferromagnetic shape memory alloys," J. Phys. IV France, vol. 112, pp. 969 - 972, 2003.
[80] N. Creton and L. Hirsinger, "Rearrangement surfaces under magnetic field and/or stress in Ni–Mn–Ga," Journal of Magnetism and Magnetic Materials, vol. 290–291, Part 2, pp. 832-835, 2005.
[81] B. Kiefer and D. C. Lagoudas, "Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys," Philosophical Magazine, vol. 85, pp. 4289-4329, 2005.
[82] J. Kiang and L. Tong, "Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crytals," Journal of Magnetism and Magnetic Materials, vol. 292, pp. 394-412, 2005.
[83] Y. F. Ma and J. Y. Li, "A constrained theory on actuation strain in ferromagnetic shape memory alloys induced by domain switching," Acta Materialia, vol. 55, pp. 3261-3269, 2007.
[84] T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, and L. Sorensen, "Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals," Acta Materialia, vol. 52, pp. 5083-5091, 2004.
[85] I. Opahle, K. Koepernik, U. Nitzsche, and M. Richter, "Jahn--Teller-like origin of the tetragonal distortion in disordered Fe--Pd magnetic shape memory alloys," Applied Physics Letters, vol. 94, p. 072508, 2009.
[86] I. Opahle, K. Koepernik, and H. Eschrig, "Full-potential band-structure calculation of iron pyrite," Physical Review B, vol. 60, pp. 14035-14041, 1999.
[87] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, pp. 6671-6687, 1992.
[88] A. T. Onisan, A. N. Bogdanov, and U. K. Rößler, "Domain models for ferromagnetic shape-memory materials," Acta Materialia, vol. 58, pp. 4378-4386, 2010.
[89] B. Dutta and S. Ghosh, "First-principles based investigation on effects of magnetism on lattice dynamics in Fe72Pd28 alloy," Intermetallics, vol. 18, pp. 1143-1147, 2010.
[90] I. Kock, T. Edler, and S. G. Mayr, "Growth behavior and intrinsic properties of vapor-deposited iron palladium thin films," Journal of Applied Physics, vol. 103, pp. 046108-046108-3, 2008.
[91] T. Okazaki, Y. Iwai, and Y. Furuya, "Superelastic Properties of Rapidly Solidified Fe-Pd Ribbons," Materials Transactions, vol. 49, pp. 360-364, 2008.
[92] H. Tomita, T. Okazaki, and Y. Furuya, "Two-Way Shape Memory Effect and Micromachine of Rapidly Solidified Ferromagnetic Fe–Pd Ribbon," Materials Transactions, vol. 47, No. 3, pp. 615-618, 2006.
[93] Y. Murakami, D. Shindo, T. Sakamoto, T. Fukuda, and T. Kakeshita, "Magnetic domain structure in the presence of very thin martensite plates: Electron holography study on a thin-foil Fe–31.2 at.%Pd alloy," Acta Materialia, vol. 54, pp. 1233-1239, 2006.
[94] T. Yamamoto and M. Taya, "Reversible strain induced by martensite variant rearrangement under magnetic field and mechanical loading of Fe–Pd single crystals," Applied Physics Letters, vol. 90, pp. 251905-251905-3, 2007.
[95] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, and T. Mori, "Structural change and straining in Fe–Pd polycrystals by magnetic field," Materials Science and Engineering: A, vol. 361, pp. 75-82, 2003.
[96] V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, C. Gómez-Polo, V. A. Chernenko, and M. A. González, "Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys," Eur. Phys. J. Special Topics, vol. 158, pp. 107-112, 2008.
[97] http://www.techmaxasia.com/articles/detail/1196063383, TechMax Technical Co., Ltd., Nov. 2003.
[98] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=30.
[99] 施志超, "RT2材料的磁伸縮與磁性研究," 國立清華大學博士論文, vol. 2, pp. 7-29, 2002.
[100] 王淳楷, "鐵鈀金三元鐵磁性形狀記憶合金塊材研究," 國立清華大學碩士論文, vol. 4, pp. 73-75, 2011.
[101] G. P. Johari, J. G. McAnanama, and G. Sartor, "Effect of hydrostatic pressure on the thermoelastic transformation of Ni-Ti alloy and the entropy of transformation," Philosophical magazine. B., vol. 74, pp. 243-257, 1996.
[102] F. Xiao, T. Fukuda, T. Kakeshita, and K. Takahashi, "Concentration dependence of FCC to FCT martensitic transformation in Fe–Pd alloys," Journal of Alloys and Compounds, 2012.
[103] V. Sánchez-Alarcos, J. I. Pérez-Landazábal, and V. Recarte, "Effect of Co and Mn Doping on the Martensitic Transformations and Magnetic Properties of Fe-Pd Ferromagnetic Shape Memory Alloys," Materials science forum, vol. 635, pp. 103-110, 2010.