簡易檢索 / 詳目顯示

研究生: 韓政男
Han,Cheng-Nan
論文名稱: 利用原子-連體力學理論探討生物奈米結構力學行為
Investigation of bionano-scaled structural mechanics using atomistic-continuum mechanics method
指導教授: 江國寧
Chiang,Kuo-Ning
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 162
中文關鍵詞: 原子-連體力學法奈米力學雙股螺旋病毒薄殼有限元素法
外文關鍵詞: atomistic-continuum mechanics method, nano mechanics, dsDNA, viruses shell, finite element method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前解決奈米尺寸結構力學行為之方法主要以分子動力學為主,然此方法其計算時間間隔約為百兆分之ㄧ秒,因電腦硬體容量限制,故可計算之原子數約為數萬顆數目左右,此一因素,將對未來分析較大型之分子結構力學行為造成限制。本研究發展使用一新理論,用以改善前述分子動力學方法之不足。本研究以有限單元法為基礎,建立一原子-連體力學理論,用以計算奈米尺寸結構之動態力學行為。於該理論中,吾人首先將原子轉換為有限單元之節點,而原子間之化學鍵能即可利用原子-連體力學理論表現之。換言之,如已知各原子之位置及其原子間之作用力,即可使用本法對其結構進行力學行為分析,故本研究方法亦可對探討多重尺度(由奈米尺度至微米尺度)結構之力學行為。吾人並利用暫態有限單元方法分析奈米結構之力學行為,亦可更詳細地獲得於外負載下奈米結構中之機械力學的變化。本研究中所提出的原子-連體理論計算最多可同時模擬數百萬個原子的行為,並可將計算時間間隔增加至千萬分之一秒,故本研究之計算理論可較分子動力學理論有更長時間的歷程分析。本研究之理論可以同時考慮多種化學鍵能之共同作用,期許在未來能有更廣泛之應用。
    本研究將利用前述之原子-連體力學法,利用雙股螺旋去氧核醣核酸(double-stranded DNA, dsDNA)與病毒外殼蛋白質結構做為分析載具。首先,於合理的假設下,將原本離散的dsDNA分子結構轉換成為連續體模型,並利用有限單元法分析該結構之力學性質。本研究利用勢能函數與全域力場理論,將DNA骨架間相鄰原子之共價鍵的游離能利用摩斯勢能函數(Morse potential function)描述。且本研究將原子間作用力轉換為一連接兩節點的原子-連體轉換元素,此原子-連體轉換元素其材料特性由上述摩斯勢能函數計算求得,而各相鄰鹼基對間之作用力(氫鍵與凡得瓦力)亦可用此原子-連體轉換單元代表之。本研究於原子間之作用力部份,不僅考慮了鍵結拉伸項,亦同時考慮鍵角變形項。在病毒外鞘薄膜之機械強度探討中,本研究亦將使用薄殼理論與有限單元法來進行計算與模擬。於有限單元法中,本研究首先將組成病毒薄殼之蛋白質等效為一有限單元,而後由文獻所提供之薄殼機械參數(楊氏係數與蒲松比)帶入此等效薄殼單元,計算病毒吞噬核酸後其薄殼所承受之應力,並與文獻所量得之實驗值相互驗證。
    因此,本研究將利用原子-連體理論建立自由旋動邊界條件下之dsDNA分子數值模型,並且施加外負載於該數值模型,如此一來,則可經由暫態有限單元法軟體求解此模型力學行為。吾人將前述之數值模擬與實驗量測模擬結果比對,可獲得相當的一致性,並且可以賦予dsDNA分子於拉伸負載下結構變形之力學解釋。而在病毒外鞘薄殼應力分析中,利用等效方法所建構之類真實病毒薄膜模型,改善了薄膜理論解之不足處,且模擬結果與實驗值相比亦落在合理範圍內。於未來方面,期許本研究方法所建構之原子-連體力學法不僅可應用於生物奈米結構,更可解決任意奈米尺寸結構(如半導體之90奈米以下結構或發光二極體之發光層結構)之力學行為分析。
    關鍵字:原子-連體力學法、奈米力學、雙股螺旋DNA(ds-DNA)、病毒薄殼、有限單元法


    ACKNOWLEDGE……………………………………………………………………i ABSTRACT(CHINESE) ii ABSTRACT …………….iv LIST OF TABLES ix LIST OF FIGURES x CHAPTER I. INTRODUCTION 1 1.1 MOTIVATION OF RESEARCH 1 1.2 LITERATURE SURVEY 3 1.2.1 Review of the single molecular DNA and its experiment 3 1.2.2 Review of the DNA packaging and release from viral capsids 7 1.2.3 Review of the atomistic-continuum mechanics method 8 1.3 RESEARCH GOALS 10 CHAPTER II. THEORY 12 2.1 ATOMIC BONDING ENERGY 12 2.1.1 Covalent bond energy 13 2.1.2 Hydrogen bond energy 16 2.1.3 Stacking energy 18 2.2 INTERATOMIC FORCE AND POTENTIAL ENERGY FUNCTION 20 2.2.1 Lennard-Jones potential 21 2.2.2 Morse potential 23 2.2.3 Universal force field 24 2.3 TIME INTEGRATION SCHEME AND TRANSIENT FINITE ELEMENT METHOD 26 2.3.1 Explicit method 26 2.3.2 Implicit method 28 2.3.3 Transient finite element method (LS-DYNA) 31 2.4 NUMERICAL SIMULATION STRATEGY OF SINGLE MOLECULE 44 2.4.1 Ab initio method 44 2.4.2 Molecular dynamics method 45 2.4.3 Atomistic-continuum mechanics method 49 2.4.4 Clustered atomistic-continuum mechanics method 53 2.5 METHODOLOGY OF ATOMISTIC-CONTINUUM MECHANICS METHOD 54 2.5.1 Basic assumptions 54 2.5.2 Equivalent spring for describing bond angle motion of potential function. 56 CHAPTER III. THE ACM MODELING OF BIONANO STRUCTURE 58 3.1 GEOMETRICAL CHARACTERISTICS OF B-FORM DSDNA 58 3.1.1 dsDNA geometry in nature 58 3.1.2 Atom position of DNA 59 3.2 DNA MODEL FOR VIA ACM METHOD 61 3.2.1 Covalent bond energy in DNA 62 3.2.2 Stacking energy in DNA 64 3.2.3 Hydrogen bond energy in DNA 65 3.3 THE STRUCTURE OF VIRUSES 68 3.3.1 Symmetry of an icosahedron 70 3.3.2 Structure of phi-29 72 CHAPTER IV. NUMERICAL RESULT OF ACM BIONANO-SCALE STRUCTURE 74 4.1 VALIDATION OF THE SSDNA BACKBONE MODEL VIA EXPERIMENTS 74 4.1.1 The finite element model of the ssDNA backbone based on ACM 75 4.1.2 Simulation result and experimental validation 76 4.2 VALIDATION OF THE STRENGTH OF HYDROGEN BOND IN THE DSDNA MODEL 77 4.3 VALIDATION OF THE DSDNA ACM MODEL VIA EXPERIMENTS 79 4.3.1 The finite element model of dsDNA based on ACM method 79 4.3.2 Simulation result and experimental validation 81 4.2.3 The mechanics characteristic of the dsDNA structure 81 4.4 ESTIMATION OF THE SHELL STRENGTH OF BACTERIOPHAGE PHI-29 84 4.4.1 Hollow cylinder 86 4.4.2 Cylinder vessel with ellipsoidal head 87 4.4.3 Numerical method 88 CHAPTER V. CONCLUSION 90 REFERENCES 94 TABLE 105 FIGURES 112 APPENDIX-I: ATOM POSITION THAT USED IN THIS RESEARCH 148

    REFERENCES
    [1] J. Watson, T. Baker, S. Bell, A. Gann, M. Levine and R. Loick, Molecular Biology of the Gene, 5th ed., Benjamin/Cummings, San Francisco, USA, 2004.
    [2] B. Lewin, Genes, 7th edition, Oxford University Press, New York, USA, 2000.
    [3] W. Wood, J. Wilson, R. Benbow and L. Hood, Biochemistry: a problems approach, 2nd ed., Benjamin/Cummings, 1981, pp. 315.
    [4] J. Watson and F. Crick, “A structure for deoxyribose nucleic acid,” Nature, vol. 171, pp. 737-739, 1953.
    [5] C. Bustamante, Z. Bryant and S. B. Smith, “Ten years of tension: single-molucule DNA mechanics,” Nature, 421, 423-427, 2003.
    [6] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, pp. 156, 1970.
    [7] K. Visscher, S. P. Gross and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Quantum Electronics, vol. 2, no. 4, pp. 1066-pp.1079, 1996.
    [8] K. C. Neman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J., vol. 77, pp. 2856-pp. 2863, 1999.
    [9] G. J. L. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J., vol. 79, pp. 1155-pp.1167, 2000.
    [10] S. B. Smith, L. Finzi, and C. Bustamate, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science, vol. 258, p. 1122-pp.1126, 1992.
    [11] B. Brown, and R. R. Browan, Optical tweezers: theory and current applications, American Laboratory, 2001.
    [12] A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA, vol. 94, pp. 4853-pp.4860, 1997.
    [13] A. Ashkin, , J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., vol. 11, pp. 286, 1986.
    [14] S. Smith, Y. Cui and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science, vol. 271, pp. 795-799, 1996
    [15] Y. Cui, The elasticity of single DNA molecules and chromatin fibers determined by force measuring laser tweezers, PhD dissertation, University of Oregon , 1998, pp. 51.
    [16] D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson and C. Bustamante, “The bacteriophage ψ29 portal motor can package DNA against a large internal force,” Nature, vol. 413, pp. 748-752, 2001.
    [17] K. N. Chiang, C. A. Yuan, C. N. Han and C. Y. Chou, “Mechanical characteristic of ssDNA/dsDNA molecule under external loading,” Applied Physics Letters, vol. 88, pp. 023902-1-023902-3, 2006..
    [18] M. C. Morias, K. H. Choi, J. S. Koti, P. R. Chipman, D. L. Anderison and M. G. Rossmann, “Conservation of capsid structure in tailed dsDNA bacteriophage: the pseudoatomic structure of phi29,” Molecular Cell, vol. 18, pp.149-159, 2005.
    [19] N. V. Hud and K. H. Downing, “Cryoelectron microscopy of λ phage DNA condensates in vitreous ice: the fine structure of DNA toroids,” PNAS, vol. 98, pp. 14925-14930, 2001.
    [20] P. K. Purohit, J. Kondev and R. Phillips, “Mechanics of DNA packaging in viruses,” PNAS, vol. 100, pp. 3173-3178, 2003.
    [21] I. L. Ivanovska, P. J. de Pablo, B. Lbarra, G. Sgalari, F. C. Mackintosh, J. L. Carrsacosa, C. F. Schmidt and G. J. L. Wuite, “Bacteriophage capsids: tough nanoshells with complex elastic properties,” PNAS, vol. 101, pp. 7600-7605, 2004.
    [22] Y. R. Jeng, and C. M. Tan, “Computer simulation of tension experiments of a thin film using an atomic model,” Physical Review B, vol. 65, pp.174107-1-174107-7, 2002.
    [23] S. Izumi, T. Kawakami, and S. Sakai, “Study of combined FEM-MD method,” JSME International Journal A, vol. 44, pp. 152-159, 2001.
    [24] B. Liu, H. Jiang, Y. Huang, S. Qu, M. F. Yu, and K. C. Hwang, “Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes,” Physical Review B, vol. 72, pp.035435-1-035435-8, 2005.
    [25] G. M. Odegard, T. A. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-Continuum modeling of nano-structure materials,” Composites Science and Technology, vol. 62, no. 14, pp. 1869-1880, 2002.
    [26] H. C. Cheng, K. N. Chiang, and M. H. Lee, “An alternative local/global finite element approach or ball grid array type packages,” ASME Journal of Electronic Packaging, vol. 120, pp. 129-134, 1998.
    [27] K, N. Chiang and W. L. Chen, “Package reflow shapes prediction for solder mask defined ball grid array,” ASME Journal of Electronic Packaging, vol. 120, pp. 175-178, 1998.
    [28] C. T. Lin, and K. N. Chiang, “Investigation of nano-scale single crystal silicon using atomistic-continuum mechanics with Stillinger-Weber potential function,” IEEE conference on Emerging Technologies-Nanoelectronics: NanoSingapore 2006, pp. 5-9, Singapore, 10-13 Jan. 2006.
    [29] C. N. Han, C. Y. Chou, C. J. Wu, and K. N. Chiang, “Investigation of ssDNA Backbone Molecule Mechanical Behavior Using Atomistic-Continuum Mechanics Method,” 2006 NSTI Nanotechnology Conference and Trade Show, 7-11 May, Boston, 2006.
    [30] C. J. Wu, C. Y. Chou, C. N. Han, and K. N. Chiang, “Investigation of Carbon Nanotube Mechanical Properties Using The Atomistic-Continuum Mechanics Method,” 2006 NSTI Nanotechnology Conference and Trade Show, 7-11 May, Boston, 2006.
    [31] A. Y. T. Leung, X. Guo, X. Q. He, and S. Kitipornchai, “A continuum model for zigzag single-wall carbon nanotubes,” Applied Physics Letters, vol. 86, pp. 083110-1-083110-3, 2005.
    [32] P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang, ”The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials,” International Journal of Solid and Structure, vol. 39, pp. 3893-3906, 2002.
    [33] Y. L. Liu, “On equivalent continuum mechanics analysis for the material properties of carbon nanotube,” Master Thesis, National Tsing Hua University, Taiwan, 2004.
    [34] F. Treves, Basic linear partial differential equations, Academic press, 1975.
    [35] W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Birkhauser Verlag, Boston, 2003.
    [36] R. Serway, C. Moses and C. Moyer, Modern physics, 2nd ed., Saunders College Publishing, Philadephia, USA, 1997.
    [37] M. Fayer, Elements of quantum mechanics, 1st ed., Oxford University Press, New York, USA, 2001.
    [38] D. Griffiths, Introduction to quantum mechanics, 2nd ed., Pearson Education International, London, UK, 2005.
    [39] P. Dirac, The principles of quantum mechanics, 4th ed., Oxford Science Publications, 1958.
    [40] R. Eisberg and R. Resnick, Quantum physics of atoms, molecules, solids nuclei and particles, 2nd ed., John Wiley and Sons, 1985.
    [41] W. Heisenberg, The physical principles of quantum theory, 1st ed., Dover , New York, 1930.
    [42] R. Feynman, R. Leighton and M. Sands, The Feynman lecture on physics, Vol III, Addison-Wesley Publishing Company, 1963.
    [43] I. Tinoco, Jr., K. Sauer, J. Wang and J. Pugisi, Physical chemistry principles and applications in biological sciences, 4th ed., Prentice Hall, New Jersey, 2002.
    [44] D. Bensimon, A. J. Simon, V. Croquette and A. Bensimon, “Stretching DNA with a receding meniscus: experiments and models,” Phys. Rev. Lett., vol. 74, no 23, pp. 4754-4757, 1995.
    [45] G. A. Jeffery, W. Saneger, Hydrogen Bonding in Biological Structures, 1st ed., Springer-Verlag, Germay, 1994
    [46] J. Conery, W. Peticolas and T. Rush III, “A parallel Algorithm for Calculating the potential energy in DNA,” Proc. of 28th Annual Hawaii International Conf. on System sciences, pp. 123-pp. 131, Hawaii, USA, 1995
    [47] Y. Zhang, H. Zhou and Z. Ou-Yang, “Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions,” Biophy. J., vol. 81, pp. 1133- 1143, 2001.
    [48] H. Zhou, Y. Zhang and Z. Ou-Yang, “Elastic property of single double-stranded DNA molecules: theoretical study and comparison with experiments,” Phys. Rev. E, vol. 62, no. 1, pp. 1045-1058, 2000.
    [49] H. R. Tabar, and G. A. Mansoori, “Interatomic potential models for nanostructures,” Encyclopedia of Nanoscience and Nanotechnology, vol.x, pp.1-17, 2003.
    [50] J. E. Lennard-Jones, “Forces between atoms and ions,” Proc. R. Soc. (Lond.) A, vol. 109, pp. 584, 1925.
    [51] P. M. Morse, “Diatomic molecules according to the wave mechanics II vibrational levels,” Physical Review, vol. 34, pp.57-64, 1929.
    [52] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol.114, No. 3, pp.687-690, 1959.
    [53] T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” Journal of Microelectromechanical Systems, vol. 9, pp. 450-459, 2000.
    [54] W. Suwito, M. L. Dunn, S. J. Cunningham, and D. T. Read, “Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructures,” Journal Applied Physics, vol. 85, pp. 3519-3534, 1999
    [55] C. A. Yuan, G. Q. Zhang, C. N. Han, K. N. Chiang and Yujia Cui “Numerical simulation on the mechanical characteristics of double-stranded DNA under stretching and lateral unzipping,” Journal Applied Physics, vol. 101, pp.074702-1-074702-4, 2007
    [56] C. Benham, “Onset of writhing in circular elastic polymers,” Phys. Rev. A, 39, 2582-2586, 1989.
    [57] J. F. Marko and E. D. Siggia, “Statistical mechanics of supercoiled DNA,” Phys. Rev. E, 52, 2912-2938, 1995.
    [58] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Ⅲ, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” J. Am. Chem. Soc., vol. 114, pp. 10024-10035, 1992.
    [59] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr. D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force filed for the simulation of proteins, nucleic, acids, and organic molecules,” Journal of American Chemical Society, vol. 117, pp. 5179-5197, 1995.
    [60] M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science, vol. 282, pp.902-907, 1998.
    [61] A. A. Simpson, Y. Z. Tao, P. G. Leiman, M. O. Badasso, Y. N. He, P. J. Jardine, N. H. Olson, M. C. Morais, S. Grimes, L. D. Anderson, “Structure of the bacteriphage Phi-29 DNA packaging motor,” Nature, vol. 408, pp. 745-750, 2000.
    [62] A. Guasch, J. Pous, B. Ibarra, X. F. Gomis-Ruth, J. M. Valpuesta, N. Sousa, J. L. Carrascosa and M.Coll, “Architecture of a DNA Translocating Machine: The High-resolution Structure of the Bacteriophage Phi-29 Connector Particle,” J. Mol. Biol., vol. 315, pp. 663-676, 2002.
    [63] Furio Ercolessi, “A molecular dynamics primer,” website: http://www.sissa.it/furio/.
    [64] C. A .Yuan, C. N. Han and K. N. Chiang, “Investigation of the Sequence- Dependent dsDNA Mechanical Behavior using Clustered Atomistic-Continuum Method,” NSTI Nanotechnology Conference, Anaheim, California, U.S.A., May 8-12, 2005.
    [65] C. A. Yuan, C. N. Han and K. N. Chiang, “Atomistic to Continuum Mechanical Investigation of ssDNA and dsDNA using Transient Finite Element Method,” Inter-Pacific Workshop on Nanoscience and Nanotechnology, City University of Hong Kong, Hong Kong SAR., Nov. 22-Nov. 24, 2004.
    [66] C. A. Yuan and K. N. Chiang, “Investigation of dsDNA stretching meso-mechanics using finite Element Method,” 2004 Nanotechnology Conference, March 7-11, 2004, Boston, Massachusetts, U.S.A.
    [67] C. A. Yuan and K. N. Chiang, “Numerical Simulation for B-S Structural Transition of Nicked dsDNA Using Enriched Finite Element Method,” Taiwan International Conference on Nano Science and Technology, HsinChu, Taiwan, June 30-July 3, 2004.
    [68] C. A. Yuan and K. N. Chiang, “Investigation of dsDNA stretching meso-mechanics using LS-DYNA,” FEA information worldwide news(e-journal), May, 2004.
    [69] J. Marko and S. Cocco, “The micromechanics of DNA,” Physics World, pp. 37-41, March, 2003
    [70] G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nature Materials, vol. 2, pp. 715-725, Nov, 2003.
    [71] http://www.ocms.ox.ac.uk/ocms/EMBOworkshop.html
    [72] H. M. Berman, W. K. Olson, D. L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S. H. Hsieh, A. R. Srinivasan, and B. Schneider, “The Nucleic Acid Database: A Comprehensive Relational Database of Three-Dimensional Structures of Nucleic Acids,” Biophys. J., 63, 751-759,1992.
    [73] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr. D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force filed for the simulation of proteins, nucleic, acids, and organic molecules,” Journal of American Chemical Society, vol. 117, pp. 5179-5197, 1995.
    [74] N. J. Dimmock, A. J. Easton and K. N. Leppard, “Introduction to Modern Virology,” Fifth edition, Blackwell Science, 2001.
    [75] J. M. Valpuesta, J. J. Fernandez, J. M. Carazo and J. L. Carrascosa, "The three-dimensional structure of a DNA translocating machine at 10 Å resolution," Struct. Fold. Des. 7, pp. 289-296, 1999.
    [76] M. Rief, H. Clausen-Schaumann and H. Gaub, “Sequence-dependent mechanics of single DNA molecules,” Nature, vol. 6, no. 4, 1999.
    [77] S. Kanamaru, P. G. Leiman, V. A. Kostyuchenko, P. R. Chipman, V. V. Mesyanzhinov, F. Arisaka, and M. G. Rossmann, “Structure of the cell-puncturing device of bacteriophage T4,” Nature, vol. 415, pp. 553-557, 2002.
    [78] W. R. Wikoff and J. E. Johnson, “Virus assembly: Imaging a molecular machine,” Curr. Biol., vol. 9, pp. 296-300, 1999.
    [79] M. E. Cerritelli, N. Cheng, A. H. Rosenberg, C. E. McPherson, F. P. Booy and A. C. Steven, “Encapsidated Conformation of Bacteriophage T7 DNA,” Cell, vol. 91, pp. 271-280, 1997.
    [80] N. H. Olson, M. Gingery, F. A. Eiserling and T. S. Baker, “The Structure of Isometric Capsids of Bacteriophage T4,” Virology, vol. 279, pp. 385-391, 2001.
    [81] J. Kindt, S. Tzlil, A. Ben-Shaul and W. M. Gelbart, “DNA packaging and ejection forces in bacteriophage,” PNAS, vol. 98, pp. 13671-13674, 2001.
    [82] W. C. Earnshaw, B. M. Honda, R. A. Laskey and J. O. Thomas, “Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin,” Cell, Vol. 21, Issue 2, pp. 373-383, 1980.
    [83] Y. Tao, N. H. Olson, W. Xu, D. L. Anderson, M. G. Rossmann and T. S. Baker, “Assembly of a Tailed Bacterial Virus and Its Genome Release Studied in Three Dimensions,” Cell, Vol. 95, Issue 3, pp. 431-437, 1998.
    [84] B. Ibarra, J. R. Castón , O. Llorca , M. Valle , J. M. Valpuesta and J. L. Carrascosa, “Topology of the components of the DNA packaging machinery in the phage phi29 prohead,” J. Mol. Biol., Vol. 298, Issue 5, pp. 807-815, 2000.
    [85] G. M. Rossmann, R. Bernal, and S. V. Pletnev, “Combining Electron Microscopic with X-Ray Crystallographic Structures,” J. Struct. Biol., Vol. 136, Issue 3, pp. 190-200, 2001.
    [86] A. Guasch, J. Pous, B. Ibarra, F. X. Gomis-Rüth, J. M. Valpuesta, N. Sousa, J. L. Carrascosa and M. Coll, “Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle,” J. Mol. Biol., Vol. 315, Issue 4, pp. 663-676, 2001.
    [87] J. E. Johnson, J. A. Speir, “Quasi-equivalent viruses: a paradigm for protein assemblies,” J. Mol. Biol., Vol. 269, Issue 5, pp. 665-675, 1997.
    [88] A. C. Ugural, Stresses in plates and shells, 2nd edition, McGRAW-Hill international editions, 1999.
    [89] T. Belytschko, W. K. Liu, and B. Moran, Nonlinear finite elements for continua and structures, 1st ed., John Wiley & Sons, NY, USA, 2000.
    [90] J. O. Hallquist, LS-DYNA theory manual, Livermore Software Technology Corp., Livermore, CA, USA, 1998.
    [91] C. T. Lin, Investigation of nanoscale single crystal group IV-A mechanical properties using atomistic-continuum mechanics (ACM), PhD dissertation, of National Tsing Hua University, 2006.
    [92] T. Belytschko, H. R. Yen, and R. Muller, “Mixed methods for time integration,” Computer Methods in Applied Mechanics and Engineering, 17, pp. 259-275, 1979.
    [93] T. Belytschko, “Partitioned and adaptive algorithms for explicit time integration,” Nonlinear Finite Element Analysis in Structural Mechanics, pp. 572-584, 1980.
    [94] G. M. Hulbert, and T. J. R. Hughes, “Numerical evaluation and comparison of subcycling algorithms for structural dynamics,” Technical Report, DNA-TR-88-8, 1988.
    [95] T. Belytschko, and C. S. Tsay, “WHAMSE: A program for three-dimensional nonlinear structural dynamics,” Report EPRI NP-2250, Project 1065-3, Electric Power Research Institute, Palo Alto, CA. 1982.
    [96] C. S. Chen, System study and construction of high-resolution optical tweezers system, Master thesis, University of National Tsing-Hua University, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE