簡易檢索 / 詳目顯示

研究生: 黃榮淵
Huang, Rong-Yuan
論文名稱: RNA病毒檢驗創新技術開發
Development of Innovative Techniques for RNA Virus Diagnosis
指導教授: 張大慈
Chang, Margaret Dah-Tsyr
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 111
中文關鍵詞: RNA病毒
外文關鍵詞: RNA virus
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據美國食品與藥物管理局(FDA)定義,體外診斷器材(In Vitro Diagnostic Device, IVD device)係用於診斷疾病或決定健康狀態,以治癒、緩和、處理或預防疾病或其後遺症之診斷用試劑、儀器與系統。相關器材主用於蒐集、準備及檢查取自於人體之樣本。本研究針對RNA病毒之體外檢測,開發新穎C型肝炎病毒(Hepatitis C virus, HCV)核酸檢測(Nucleic Acid Testing, NAT)及人類免疫缺陷病毒(Human immunodeficiency virus, HCV)免疫檢測(EIA, enzyme immunoassay)系統雛型。
    本研究首先以生物資訊軟體Remus與MISA分析C型肝炎病毒之5’untranslated region序列,針對六種HCV基因型設計專一性的探針,開發新型的HCV genotyping PCR-ELOSA (Enzyme-Linked Oligonucleotide-Sorbent Assay)病毒核酸檢測方法。實際比較本項新型技術與市面上通用之HCV核酸檢測試劑之性能,發現於HCV血清標準品與100支HCV陽性檢體中,本技術之有效檢測率及靈敏度均較高,顯示本技術能提升HCV病毒檢驗之品質與成效。
    本研究以電腦模擬篩選(in silico)與體外(in vitro)醣晶片分析,發現米根黴菌(Rhizopus oryzae)葡萄糖澱粉酶(glucoamylase, GA)的澱粉結合蛋白(starch-binding domain, SBD)之立體結構與人類單株抗體2G12相似,且與2G12一般可識別HIV表面醣蛋白抗原gp120。本研究設計直接三明治ELISA分析,證明RoSBD的確可利用蛋白質與多醣分子之交互作用與HIV1-gp120之特殊醣抗原結合。此外,亦發現麴菌(Aspergillus niger) 葡萄糖澱粉酶的澱粉結合蛋白(AnSBD)亦具相同作用。本研究首先發現SBD為新穎的HIV gp120結合蛋白,並利用其結構與功能特性開發創新的病毒偵測理論與試劑。
    綜合言之,本論文發現並報導具新穎性之HCV病毒基因型與HIV病毒抗原檢測技術,並已開發出HCV genotyping PCR-ELOSA與HIV-SBD antigen ELISA檢測試劑雛型,未來將可實際應用於RNA病毒之分子檢測與改良,具體貢獻於生物醫學體外診斷器材領域。


    In vitro diagnostic device (IVD device) includes reagents, calibrators, sample collection device, control materials, and related instruments or apparatus according to the definition of U.S. Food and Drug Administration (USFDA). IVD device is now widely used for diagnostic, monitoring or preventive purposes. In this thesis investigation of in vitro diagnostic strategy for infectious RNA viruses leads to development of proto-type diagnosis including nucleic acid testing (NAT) system for Hepatitis C virus (HCV) and enzyme immunoassay (EIA) for Human immunodeficiency virus (HIV).
    At first Remus and MISA bioinformatics software were employed to analyze the 5’ untranslated region sequences in several HCV strains. Then the oligonucleotide primers and probes specifically reacted to six different HCV genotypes were designed and tested in a new HCV genotyping Polymerase Chain Reaction Enzyme-Linked Oligonucleotide-Sorbent Assay (PCR-ELOSA). Screening of 100 clinical serum samples using our novel PCR-ELOSA system indicated higher sensitivity and specificity than commercial NAT diagnostic kits. . It demonstrated the quality and performance of this new technique.
    In addition, in silico molecular modeling was carried out to investigate protein-glycan interaction. It was found that the structure of starch-binding domain (SBD) of Rhizopus oryzae glucoamylase (RoGA) was quite similar to the VH domain of human 2G12 monoclonal antibody, which recognized the HIV envelope glycoprotein. Here direct sandwich ELISA and in vitro glycan array analysis proved that RoSBD could bind to HIV1-gp120 glycoprotein through protein-polysaccharide interaction. Likewise, the SBD of Aspergillus niger glucoamylase (AnSBD) showed the same binding specificity. Hence we have firstly discovered and reported novel binding ability between RoSBD / AnSBD and a special glycan structure of HIV1 gp120 envelope glycoprotein, which leads to development of novel molecular diagnostic theory and reagents for detection of RNA virus, and may further contribute to the fields of biomedicine and biotechnology.

    中文摘要...................................................9 Abstract..................................................11 Abbreviation..............................................13 致謝......................................................14 Chapter 1 Introduction..............................................15 1.1 Human RNA virus as diagnostic target.............16 1.2 HCV diagnosis....................................17 1.3 HIV diagnosis....................................21 1.4 Carbohydrate binding modules (CBMs)..............27 1.5 Correlation between CBM and immunoglobulin.......30 1.6 Research innovation..............................31 Chapter 2 HCV PCR-ELOSA................................32 2.0 Abstract.........................................33 2.1 Materials and methods............................33 2.1.1 Construction of the HCV genotyping PCR-ELOSA system.....................................33 2.1.2 Specimens and HCV RNA standard.............34 2.1.3 Internal and positive controls.............35 2.1.4 Reverse transcription and nested PCR.......36 2.1.5 ELOSA procedure............................37 2.2 Results..........................................38 2.2.1 Sensitivity of the new HCV genotyping PCR- ELOSA system...............................38 2.2.2 Evaluation of the HCV genotyping PCR-ELOSA with clinical samples......................38 2.2.3 Specificity of the HCV genotyping PCR-ELOSA system.....................................39 2.2.4 Intra- and inter-assay variations of the HCV genotyping PCR ELOSA.......................40 2.3 Summary...........................................40 Chapter 3 SBD-HIV ELISA................................41 3.0 Abstract.........................................42 3.1 Materials and methods............................42 3.1.1 Structure-based Multiple Sequence Alignment42 3.1.2 Expression and purification of recombinant HIV1 SBD-gp41 fusion protein...............44 3.1.3 Expression and purification of RoSBD and AnSBD-6H...................................44 3.1.4 ELISA procedure............................45 3.1.5 HIV binding of AnSBD / RoSBD in the presence of soluble glycans.........................47 3.1.6 Competition effects of HIV mAbs and gp140 to HIV-RoSBD and HIV-AnSBD binding............47 3.1.7 Glycan Array Screening of RoSBD............47 3.1.8 Statistical analysis.......................48 3.2 Results..........................................48 3.2.1 Sequence alignment and structure modeling among several starch-binding CBMs..........49 3.2.2 Structure aligning and modeling of the VH domain of 2G12 with RoSBD..................50 3.2.3 Purification of recombinant HIV1 SBD-gp41 fusion protein.............................50 3.2.4 HIV binding specificity of RoSBD / AnSBD using ELISA................................51 3.2.5 Glycan effects on RoSBD / AnSBD binding to HIV........................................53 3.2.6 Competitive effects of HIV mAbs and gp140 antigen to HIV-RoSBD and HIV-AnSBD binding.53 3.2.7 Glycan Array Screening of RoSBD............54 3.2.8 Man4 binding proteins......................54 3.3 Summary..........................................55 Chapter4 Discussion....................................57 4.1 Novelty of this thesis...........................58 4.2 Integrated research technology...................59 4.3 Prospective......................................60 References................................................62 Figures...................................................70 Tables....................................................96 Appendix.................................................104

    1. Hobson-Peters, J. et al. A glycosylated peptide in the West Nile virus envelope
    protein is immunogenic during equine infection. J Gen Virol 89, 3063-3072
    (2008).
    2. Kanai, R. et al. Crystal structure of west nile virus envelope glycoprotein reveals
    viral surface epitopes. J Virol 80, 11000-11008 (2006).
    3. Sundaram, R. et al. De novo design of peptide immunogens that mimic the coiled
    coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane
    subunit for induction of native protein reactive neutralizing antibodies. J Biol
    Chem 279, 24141-24151 (2004).
    4. Kobe, B. et al. Crystal structure of human T cell leukemia virus type 1 gp21
    ectodomain crystallized as a maltose-binding protein chimera reveals structural
    evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A 96,
    4319-4324 (1999).
    5. Zhang, Y. et al. Conformational changes of the flavivirus E glycoprotein.
    Structure 12, 1607-1618 (2004).
    6. Shu, P.Y. et al. Dengue virus serotyping based on envelope and membrane and
    nonstructural protein NS1 serotype-specific capture immunoglobulin M enzymelinked
    immunosorbent assays. J Clin Microbiol 42, 2489-2494 (2004).
    7. Flint. S. J. et al. Principles of virology : molecular biology, pathogenesis, and
    control of animal viruses., Edn. Second. (ASM Press, Washington, DC; 2004).
    8. Nguyen, M.H. & Keeffe, E.B. Prevalence and treatment of hepatitis C virus
    genotypes 4, 5, and 6. Clin Gastroenterol Hepatol 3, S97-S101 (2005).
    9. Lechmann, M. & Liang, T.J. Vaccine development for hepatitis C. Semin Liver
    Dis 20, 211-226 (2000).
    10. Lauer, G.M. & Walker, B.D. Hepatitis C virus infection. N Engl J Med 345, 41-52
    (2001).
    11. Simmonds, P. et al. Consensus proposals for a unified system of nomenclature of
    hepatitis C virus genotypes. Hepatology 42, 962-973 (2005).
    12. Zein, N.N. Clinical significance of hepatitis C virus genotypes. Clin Microbiol
    Rev 13, 223-235 (2000).
    13. Sablon, E. & Shapiro, F. Advances in Molecular Diagnosis of HBV Infection and
    Drug Resistance. Int J Med Sci 2, 8-16 (2005).
    14. Sano, T., Smith, C.L. & Cantor, C.R. Immuno-PCR: very sensitive antigen
    detection by means of specific antibody-DNA conjugates. Science 258, 120-122
    (1992).
    15. Niemeyer, C.M., Adler, M. & Wacker, R. Immuno-PCR: high sensitivity
    detection of proteins by nucleic acid amplification. Trends Biotechnol 23, 208-
    216 (2005).
    16. Sanna, P.P. et al. Rapid induction of tumor necrosis factor alpha in the
    cerebrospinal fluid after intracerebroventricular injection of lipopolysaccharide
    revealed by a sensitive capture immuno-PCR assay. Proc Natl Acad Sci U S A 92,
    272-275 (1995).
    17. Saito, K. et al. Detection of human serum tumor necrosis factor-alpha in healthy
    donors, using a highly sensitive immuno-PCR assay. Clin Chem 45, 665-669
    (1999).
    64
    18. Komatsu, M. et al. Tumor necrosis factor-alpha in serum of patients with
    inflammatory bowel disease as measured by a highly sensitive immuno-PCR. Clin
    Chem 47, 1297-1301 (2001).
    19. Maia, M. et al. Development of a two-site immuno-PCR assay for hepatitis B
    surface antigen. J Virol Methods 52, 273-286 (1995).
    20. Barletta, J.M., Edelman, D.C. & Constantine, N.T. Lowering the detection limits
    of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am J
    Clin Pathol 122, 20-27 (2004).
    21. Wu, H.C. et al. Detection of Clostridium botulinum neurotoxin type A using
    immuno-PCR. Lett Appl Microbiol 32, 321-325 (2001).
    22. Fischer, A. et al. A quantitative real-time immuno-PCR approach for detection of
    staphylococcal enterotoxins. J Mol Med 85, 461-469 (2007).
    23. Niemeyer, C.M., Adler, M. & Blohm, D. Fluorometric polymerase chain reaction
    (PCR) enzyme-linked immunosorbent assay for quantification of immuno-PCR
    products in microplates. Anal Biochem 246, 140-145 (1997).
    24. Gilligan, K. et al. Identification of Staphylococcus aureus enterotoxins A and B
    genes by PCR-ELISA. Mol Cell Probes 14, 71-78 (2000).
    25. Musiani, M. et al. Competitive PCR-ELISA protocols for the quantitative and the
    standardized detection of viral genomes. Nat Protoc 2, 2511-2519 (2007).
    26. Musiani, M. et al. Qualitative PCR-ELISA protocol for the detection and typing
    of viral genomes. Nat Protoc 2, 2502-2510 (2007).
    27. Scott, J.D. & Gretch, D.R. Molecular diagnostics of hepatitis C virus infection: a
    systematic review. JAMA 297, 724-732 (2007).
    28. Pawlotsky, J.M. Use and interpretation of virological tests for hepatitis C.
    Hepatology 36, S65-73 (2002).
    29. Hnatyszyn, H.J. Chronic hepatitis C and genotyping: the clinical significance of
    determining HCV genotypes. Antivir Ther 10, 1-11 (2005).
    30. Chevaliez, S. & Pawlotsky, J.M. Hepatitis C virus: virology, diagnosis and
    management of antiviral therapy. World J Gastroenterol 13, 2461-2466 (2007).
    31. Kantor, R. & Katzenstein, D. Drug resistance in non-subtype B HIV-1. J Clin
    Virol 29, 152-159 (2004).
    32. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex
    with the CD4 receptor and a neutralizing human antibody. Nature 393, 648-659
    (1998).
    33. Willey, R.L. et al. Identification of conserved and divergent domains within the
    envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl
    Acad Sci U S A 83, 5038-5042 (1986).
    34. Modrow, S. et al. Computer-assisted analysis of envelope protein sequences of
    seven human immunodeficiency virus isolates: prediction of antigenic epitopes in
    conserved and variable regions. J Virol 61, 570-578 (1987).
    35. Kowalski, M. et al. Functional regions of the envelope glycoprotein of human
    immunodeficiency virus type 1. Science 237, 1351-1355 (1987).
    36. Helseth, E. et al. Human immunodeficiency virus type 1 gp120 envelope
    glycoprotein regions important for association with the gp41 transmembrane
    glycoprotein. J Virol 65, 2119-2123 (1991).
    65
    37. Moore, J.P. et al. Probing the structure of the human immunodeficiency virus
    surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol 68,
    469-484 (1994).
    38. Moore, J.P. et al. Immunological evidence for interactions between the first,
    second, and fifth conserved domains of the gp120 surface glycoprotein of human
    immunodeficiency virus type 1. J Virol 68, 6836-6847 (1994).
    39. Olshevsky, U. et al. Identification of individual human immunodeficiency virus
    type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64, 5701-
    5707 (1990).
    40. Pollard, S.R. et al. Truncated variants of gp120 bind CD4 with high affinity and
    suggest a minimum CD4 binding region. EMBO J 11, 585-591 (1992).
    41. Moore, J.P. & Sodroski, J. Antibody cross-competition analysis of the human
    immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J Virol 70,
    1863-1872 (1996).
    42. John M. Coffin, S.H.H., & Harold E. Varmus. Retroviruses (Cold Spring Harbor
    Laboratory Press, New York; 1997).
    43. Bulterys, M. et al. Rapid HIV-1 testing during labor: a multicenter study. JAMA
    292, 219-223 (2004).
    44. Constantine, N.T. et al. Improved classification of recent HIV-1 infection by
    employing a two-stage sensitive/less-sensitive test strategy. J Acquir Immune
    Defic Syndr 32, 94-103 (2003).
    45. Stiegler, G. et al. Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in
    asymptomatic HIV-1-infected humans: a phase I evaluation. AIDS 16, 2019-2025
    (2002).
    46. Armbruster, C. et al. A phase I trial with two human monoclonal antibodies
    (hMAb 2F5, 2G12) against HIV-1. AIDS 16, 227-233 (2002).
    47. Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive
    neutralization epitope on the gp120 glycoprotein of human immunodeficiency
    virus type 1. J Virol 70, 1100-1108 (1996).
    48. Krauss, I.J. et al. Fully synthetic carbohydrate HIV antigens designed on the logic
    of the 2G12 antibody. J Am Chem Soc 129, 11042-11044 (2007).
    49. Sanders, R.W. et al. The mannose-dependent epitope for neutralizing antibody
    2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76,
    7293-7305 (2002).
    50. Scanlan, C.N. et al. The broadly neutralizing anti-human immunodeficiency virus
    type 1 antibody 2G12 recognizes a cluster of alpha1-->2 mannose residues on the
    outer face of gp120. J Virol 76, 7306-7321 (2002).
    51. Calarese, D.A. et al. Antibody domain exchange is an immunological solution to
    carbohydrate cluster recognition. Science 300, 2065-2071 (2003).
    52. Calarese, D.A. et al. Dissection of the carbohydrate specificity of the broadly
    neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A 102, 13372-
    13377 (2005).
    53. Wang, S.K. et al. Targeting the carbohydrates on HIV-1: Interaction of
    oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN.
    Proc Natl Acad Sci U S A 105, 3690-3695 (2008).
    66
    54. Binley, J.M. et al. Comprehensive cross-clade neutralization analysis of a panel of
    anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78,
    13232-13252 (2004).
    55. Chou, W.I. et al. The family 21 carbohydrate-binding module of glucoamylase
    from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding.
    Biochem J 396, 469-477 (2006).
    56. Sauer, J. et al. Glucoamylase: structure/function relationships, and protein
    engineering. Biochim Biophys Acta 1543, 275-293 (2000).
    57. Norouzian, D. et al. Fungal glucoamylases. Biotechnol Adv 24, 80-85 (2006).
    58. Manjunath, P., Shenoy, B.C. & Raghavendra Rao, M.R. Fungal glucoamylases. J
    Appl Biochem 5, 235-260 (1983).
    59. Coutinho, P.M. & Reilly, P.J. Glucoamylase structural, functional, and
    evolutionary relationships. Proteins 29, 334-347 (1997).
    60. Mertens, J.A. & Skory, C.D. Isolation and characterization of two genes that
    encode active glucoamylase without a starch binding domain from Rhizopus
    oryzae. Curr Microbiol 54, 462-466 (2007).
    61. Goto, M. et al. Functional analysis of O-linked oligosaccharides in
    threonine/serine-rich region of Aspergillus glucoamylase by expression in
    mannosyltransferase-disruptants of yeast. Eur J Biochem 260, 596-602 (1999).
    62. Liu, Y.N. et al. Solution structure of family 21 carbohydrate-binding module from
    Rhizopus oryzae glucoamylase. Biochem J 403, 21-30 (2007).
    63. Lin, S.C. et al. CBM21 starch-binding domain: a new purification tag for
    recombinant protein engineering. Protein Expr Purif 65, 261-266 (2009).
    64. Rodriguez-Sanoja, R., Oviedo, N. & Sanchez, S. Microbial starch-binding domain.
    Curr Opin Microbiol 8, 260-267 (2005).
    65. Machovic, M. & Janecek, S. The evolution of putative starch-binding domains.
    FEBS Lett 580, 6349-6356 (2006).
    66. Machovic, M. & Janecek, S. Starch-binding domains in the post-genome era. Cell
    Mol Life Sci 63, 2710-2724 (2006).
    67. Tung, J.Y. et al. Crystal structures of the starch-binding domain from Rhizopus
    oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416, 27-36
    (2008).
    68. Sorimachi, K. et al. Solution structure of the granular starch binding domain of
    Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 647-661
    (1997).
    69. Orengo, C.A. et al. CATH--a hierarchic classification of protein domain structures.
    Structure 5, 1093-1108 (1997).
    70. Pai, T.W. et al. REMUS: a tool for identification of unique peptide segments as
    epitopes. Nucleic Acids Res 34, W198-201 (2006).
    71. Wang, H.Y. et al. Transcriptional regulation of human eosinophil RNases by an
    evolutionary- conserved sequence motif in primate genome. BMC Mol Biol 8, 89
    (2007).
    72. Cuff, J.A. et al. JPred: a consensus secondary structure prediction server.
    Bioinformatics 14, 892-893 (1998).
    67
    73. Thompson, J.D. et al. The CLUSTAL_X windows interface: flexible strategies for
    multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25,
    4876-4882 (1997).
    74. Lin, S.C. et al. Role of the linker region in the expression of Rhizopus oryzae
    glucoamylase. BMC Biochem 8, 9 (2007).
    75. Liu, W.T. et al. Identification and characterization of a novel fibril forming
    peptide in fungal starch binding domain. Biochem Biophys Res Commun 377,
    966-970 (2008).
    76. Boraston, A.B. et al. A structural and functional analysis of alpha-glucan
    recognition by family 25 and 26 carbohydrate-binding modules reveals a
    conserved mode of starch recognition. J Biol Chem 281, 587-598 (2006).
    77. Abe, A. et al. Complex structures of Thermoactinomyces vulgaris R-47 alphaamylase
    1 with malto-oligosaccharides demonstrate the role of domain N acting
    as a starch-binding domain. J Mol Biol 335, 811-822 (2004).
    78. Mikami, B. et al. Crystal structure of pullulanase: evidence for parallel binding of
    oligosaccharides in the active site. J Mol Biol 359, 690-707 (2006).
    79. Feese, M.D. et al. Crystal structure of glycosyltrehalose trehalohydrolase from the
    hyperthermophilic archaeum Sulfolobus solfataricus. J Mol Biol 301, 451-464
    (2000).
    80. Pashov, A. et al. Concanavalin A binding to HIV envelope protein is less sensitive
    to mutations in glycosylation sites than monoclonal antibody 2G12. Glycobiology
    15, 994-1001 (2005).
    81. Wang, J. et al. Novel template-assembled oligosaccharide clusters as epitope
    mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody
    binding study. Org Biomol Chem 5, 1529-1540 (2007).
    82. Pokorna, M. et al. Unusual entropy-driven affinity of Chromobacterium
    violaceum lectin CV-IIL toward fucose and mannose. Biochemistry 45, 7501-
    7510 (2006).
    83. Sudakevitz, D. et al. A new Ralstonia solanacearum high-affinity mannosebinding
    lectin RS-IIL structurally resembling the Pseudomonas aeruginosa
    fucose-specific lectin PA-IIL. Mol Microbiol 52, 691-700 (2004).
    84. Marotte, K. et al. X-ray structures and thermodynamics of the interaction of PAIIL
    from Pseudomonas aeruginosa with disaccharide derivatives. ChemMedChem
    2, 1328-1338 (2007).
    85. Lameignere, E. et al. Structural basis for mannose recognition by a lectin from
    opportunistic bacteria Burkholderia cenocepacia. Biochem J 411, 307-318 (2008).
    86. Grant, P.R. & Busch, M.P. Nucleic acid amplification technology methods used
    in blood donor screening. Transfus Med 12, 229-242 (2002).
    87. Craggs, J.K. et al. Development of a strand-specific RT-PCR based assay to
    detect the replicative form of hepatitis C virus RNA. J Virol Methods 94, 111-120
    (2001).
    88. Tang, Y.W. et al. Detection of hepatitis C virus by a user-developed reverse
    transcriptase-PCR and use of amplification products for subsequent genotyping. J
    Clin Virol 31, 148-152 (2004).
    89. Lindh, M. & Hannoun, C. Genotyping of hepatitis C virus by Taqman real-time
    PCR. J Clin Virol 34, 108-114 (2005).
    68
    90. Rolfe, K.J. et al. A real-time Taqman method for hepatitis C virus genotyping. J
    Clin Virol 34, 115-121 (2005).
    91. Moghaddam, A., Reinton, N. & Dalgard, O. A rapid real-time PCR assay for
    determination of hepatitis C virus genotypes 1, 2 and 3a. J Viral Hepat 13, 222-
    229 (2006).
    92. Stuyver, L. et al. Hepatitis C virus genotyping by means of 5'-UR/core line probe
    assays and molecular analysis of untypeable samples. Virus Res 38, 137-157
    (1995).
    93. Stuyver, L. et al. Second-generation line probe assay for hepatitis C virus
    genotyping. J Clin Microbiol 34, 2259-2266 (1996).
    94. Noppornpanth, S. et al. Genotyping hepatitis C viruses from Southeast Asia by a
    novel line probe assay that simultaneously detects core and 5' untranslated regions.
    J Clin Microbiol 44, 3969-3974 (2006).
    95. Bouchardeau, F. et al. Improvement of hepatitis C virus (HCV) genotype
    determination with the new version of the INNO-LiPA HCV assay. J Clin
    Microbiol 45, 1140-1145 (2007).
    96. Ross, R.S., Viazov, S. & Roggendorf, M. Genotyping of hepatitis C virus isolates
    by a new line probe assay using sequence information from both the
    5'untranslated and the core regions. J Virol Methods 143, 153-160 (2007).
    97. Germer, J.J. et al. Evaluation of the invader assay for genotyping hepatitis C virus.
    J Clin Microbiol 44, 318-323 (2006).
    98. Ilina, E.N. et al. Matrix-assisted laser desorption ionization-time of flight (mass
    spectrometry) for hepatitis C virus genotyping. J Clin Microbiol 43, 2810-2815
    (2005).
    99. Kobayashi, M. et al. Enzyme-linked immunosorbent assay to detect hepatitis C
    virus serological groups 1 to 6. J Gastroenterol 34, 505-509 (1999).
    100. Stuyver, L. et al. Typing of hepatitis C virus isolates and characterization of new
    subtypes using a line probe assay. J Gen Virol 74 ( Pt 6), 1093-1102 (1993).
    101. Ohno, O. et al. New hepatitis C virus (HCV) genotyping system that allows for
    identification of HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a, and 6a. J Clin
    Microbiol 35, 201-207 (1997).
    102. Katsuya, Y. et al. Three-dimensional structure of Pseudomonas isoamylase at 2.2
    A resolution. J Mol Biol 281, 885-897 (1998).
    103. Fritzsche, H.B., Schwede, T. & Schulz, G.E. Covalent and three-dimensional
    structure of the cyclodextrinase from Flavobacterium sp. no. 92. Eur J Biochem
    270, 2332-2341 (2003).
    104. Mosbah, A. et al. Solution structure of the module X2 1 of unknown function of
    the cellulosomal scaffolding protein CipC of Clostridium cellulolyticum. J Mol
    Biol 304, 201-217 (2000).
    105. Martial, J. et al. Hepatitis C virus (HCV) genotypes in the Caribbean island of
    Martinique: evidence for a large radiation of HCV-2 and for a recent introduction
    from Europe of HCV-4. J Clin Microbiol 42, 784-791 (2004).
    106. Ansaldi, F. et al. Different seroprevalence and molecular epidemiology patterns of
    hepatitis C virus infection in Italy. J Med Virol 76, 327-332 (2005).
    69
    107. Cenci, M. et al. Prevalence of hepatitis C virus (HCV) genotypes and increase of
    type 4 in central Italy: an update and report of a new method of HCV genotyping.
    Anticancer Res 27, 1219-1222 (2007).
    108. Sunanchaikarn, S. et al. Seroepidemiology and genotypes of hepatitis C virus in
    Thailand. Asian Pac J Allergy Immunol 25, 175-182 (2007).
    109. Esteban, J.I., Sauleda, S. & Quer, J. The changing epidemiology of hepatitis C
    virus infection in Europe. J Hepatol 48, 148-162 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE