簡易檢索 / 詳目顯示

研究生: 趙振傑
Jhao, Jhen Jie
論文名稱: 以循環伏安法製備氧化銠薄膜 在垂直成長的石墨烯纖維應用於超級電容
Electrochemical cyclic voltammetric deposition of ruthenium oxide thin films onto the vertically grown graphene nanofibers for high performance supercapacitor
指導教授: 蔡春鴻
Tsai, Chung Hung
葉宗洸
Yen, Tsung Kuang
口試委員: 薛康琳
Hsueh, Kan Lin
謝建國
Hsieh, Chien Kuo
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 二氧化釕石墨烯纖維循環伏安法超級電容
外文關鍵詞: ruthenium oxide, supercapacitor, cyclic voltammetric deposition, graphene nanofiber
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用易於製備的循環伏安法沉積二氧化釕(RuO2)薄膜在垂直成長的石墨烯纖維(Graphene nanofiber)上,並應用在電化學電容。此奈米結構的複合材料經由高解析度的穿透視電子顯微鏡可觀查到二氧化釕奈米顆粒均穩定附著在石墨烯纖維上;拉曼光譜儀則檢驗二氧化釕-石墨烯纖維的分子鍵結;而其化學鍵結狀態則由X射線光電子能譜分析。在電性分析方面,則是使用循環伏安法、恆電流充放電測試及電化學阻抗頻譜。從上述分析中可得知我們製備的複合材料比單純二氧化釕薄膜提昇了3.5倍的比電容值,而該電極材料的比電容值為53.7 mF cm-2。另外從電化學阻抗頻譜分析發現二氧化釕-石墨烯纖維的材料呈現良好的導電性。這些結果證明了我們所合成的電極材料是一個極具潛力的超級電容應用,對於未來儲能元件的發展佔有一席重要之地。


    In this work, ruthenium oxide (RuO2¬) thin films were synthesized onto the surface of the vertically grown graphene nanofibers (GNFs) by cyclic voltammetric (CV) deposition, an easy and efficient solution-based method, have been investigated for potential application in electrochemical capacitors (ECs). The nanostructure of RuO2/GNF was characterized by the high-resolution transmission electron microscopy (HRTEM). From the HRTEM image, the RuO2 nanoparticles were anchored onto the GNFs. The Raman spectrum was used to examine the characteristic of the RuO2/GNF. The chemical states and characteristic of RuO2/GNF were confirmed by the X-ray photoelectron spectroscopy (XPS). The electrochemical properties were characterized by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectra (EIS). From studying the electrochemical charge storage properties of RuO2/GNF, electrochemical measurements reveal that the maximum specific capacitance of the RuO2/GNF electrodes is 53.7 mF cm-2. This is attributed to RuO2 is well-dispersed on GNFs.

    Abstract i 摘要 ii 致謝 iii Table of Content v List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Introduction of supercapacitor 1 1.2 Motivation 3 Chapter 2 Literature review 4 2.1 Supercapacitor 4 2.2 Charge storage mechanism 7 2.3 Electrode material 10 2.4 Carbon nanomaterials for EDLCs 10 2.4.1 Carbon black 12 2.4.2 Activated carbon 13 2.4.3 Activated carbon fibers 14 2.4.4 Carbon aerogel 16 2.4.5 Carbon nanotube 17 2.4.6 Graphene 18 2.5 Pseudocapacitor 19 2.5.1 Conductive polymers 19 2.5.2 Ruthenium oxides 23 2.5.3 Manganese oxides 28 2.5.4 Iron oxide 33 Chapter 3 Experimental method 34 3.1 Fabrication of GNFs 34 3.2 Synthesis of RuO2 thin films 36 3.3 Materials characterization 38 3.3.1 E-Gun (Electron Beam Evaporation) 38 3.3.2 Thermal CVD system 39 3.3.3 Electrochemical deposition and electrochemical analysis equipment 40 3.3.4 Field emission gun scanning electron microscopy (FEG-SEM) 42 3.3.5 High-resolution transmission electron microscopy (HRTEM) 43 3.3.6 Raman spectroscopy 44 3.3.7 High resolution X-ray photoelectron spectroscopy (XPS) 45 3.4 Electrochemical measurements 46 Chapter 4 Result and discussion 48 4.1 Characterization of GNFs coated RuO2 thin film material 48 4.2 Electrochemical analysis 57 Chapter 5 Conclusion 75 Reference 76

    Reference
    [1] V. Subramanian, H. W. Zhu, R. Vajtai, P. M. Ajayan, and B. Q. Wei, "Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures," Journal of Physical Chemistry B, vol. 109, pp. 20207-20214, 2005.
    [2] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845-854, 2008.
    [3] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, pp. 2520-2531, 2009.
    [4] X. F. Wang, X. H. Lu, B. Liu, D. Chen, Y. X. Tong, and G. Z. Shen, "Flexible Energy-Storage Devices: Design Consideration and Recent Progress," Advanced Materials, vol. 26, pp. 4763-4782, 2014.
    [5] B. Pillay and J. Newman, "The influence of side reactions on the performance of electrochemical double-layer capacitors," Journal of the Electrochemical Society, vol. 143, pp. 1806-1814, 1996.
    [6] B. E. Conway, "Transition from Supercapacitor to Battery Behavior in Electrochemical Energy-Storage," Journal of the Electrochemical Society, vol. 138, pp. 1539-1548, 1991.
    [7] S. Oke, M. Yamamoto, K. Shinohara, H. Takikawa, X. J. He, S. Itoh, et al., "Specific capacitance of electrochemical capacitor using RuO2 loading arc-soot/activated carbon composite electrode," Chemical Engineering Journal, vol. 146, pp. 434-438, 2009.
    [8] V. Panic, T. Vidakovic, S. Gojkovic, A. Dekanski, S. Milonjic, and B. Nikolic, "The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol," Electrochimica Acta, vol. 48, pp. 3805-3813, 2003.
    [9] Z. Gui, E. Gillette, J. Duay, J. K. Hu, N. Kim, and S. B. Lee, "Co-electrodeposition of RuO2-MnO2 nanowires and the contribution of RuO2 to the capacitance increase," Physical Chemistry Chemical Physics, vol. 17, pp. 15173-15180, 2015.
    [10] M. Rarnani, B. S. Haran, R. E. White, and B. N. Popov, "Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors," Journal of the Electrochemical Society, vol. 148, pp. A374-A380, 2001.
    [11] J. R. Zhang, D. C. Jiang, B. Chen, J. J. Zhu, L. P. Jiang, and H. Q. Fang, "Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor," Journal of the Electrochemical Society, vol. 148, pp. A1362-A1367, 2001.
    [12] J. Ho, T. R. Jow, and S. Boggs, "Historical Introduction to Capacitor Technology," Ieee Electrical Insulation Magazine, vol. 26, pp. 20-25, 2010.
    [13] R. Kotz, S. Muller, M. Bartschi, B. Schnyder, P. Dietrich, F. N. Buchi, et al., "Supercapacitors for peak-power demand in fuel-cell-driven cars," Batteries and Supercapacitors, pp. 564-575, 2003.
    [14] E. Bilbao, H. Gaztanaga, I. Etxeberria-Otadui, and A. Milo, "Design and Development of a Supercapacitor-Based Microgrid Dynamic Support System," Epe: 2009 13th European Conference on Power Electronics and Applications, Vols 1-9, pp. 3471-3480, 2009.
    [15] M. Farhadi and O. Mohammed, "Adaptive Energy Management in Redundant Hybrid DC Microgrid for Pulse Load Mitigation," Ieee Transactions on Smart Grid, vol. 6, pp. 54-62, 2015.
    [16] A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, "Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS)," Ieee Transactions on Power Electronics, vol. 28, pp. 1509-1522, 2013.
    [17] P. Magne, B. Nahid-Mobarakeh, and S. Pierfederici, "Active Stabilization of DC Microgrids Without Remote Sensors for More Electric Aircraft," Ieee Transactions on Industry Applications, vol. 49, 2013.
    [18] M. H. Ervin, L. T. Le, and W. Y. Lee, "Inkjet-Printed Flexible Graphene-Based Supercapacitor," Electrochimica Acta, vol. 147, pp. 610-616, 2014.
    [19] D. M. Vilathgamuwa, S. D. G. Jayasinghe, F. C. Lee, and U. K. Madawala, "A Unique Battery/Supercapacitor Direct Integration Scheme for Hybrid Electric Vehicles," Iecon 2011: 37th Annual Conference on Ieee Industrial Electronics Society, 2011.
    [20] M. E. Choi, J. S. Lee, and S. W. Seo, "Real-Time Optimization for Power Management Systems of a Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles," Ieee Transactions on Vehicular Technology, vol. 63, pp. 3600-3611, 2014.
    [21] D. L. Chapman, "A Contribution to the Theory of Electrocapillarity," Philosophical Magazine, vol. 25, pp. 475-481, 1913.
    [22] R. A. Fisher, M. R. Watt, and W. J. Ready, "Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials," Ecs Journal of Solid State Science and Technology, vol. 2, pp. M3170-M3177, 2013.
    [23] R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
    [24] M. Y. Zhang, X. Zhao, and Q. C. Zhuang, "Preparation and Electrochemical Properties of Multiscale Porous Active Carbon for Supercapacitor Electrodes Made from Ultra-Pure Lignite by Microwave Irradiation," International Journal of Electrochemical Science, vol. 11, pp. 2153-2165, 2016.
    [25] R. Chandrasekaran, J. Palma, and M. Anderson, "Carbide derived carbon electrode with natural graphite addition in magnesium electrolyte based cell for supercapacitor enhancements," Journal of Energy Chemistry, vol. 24, pp. 264-270, 2015.
    [26] M. Usman, L. J. Pan, M. Asif, Z. Mahmood, M. A. Khan, and X. Fu, "Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO," Applied Surface Science, vol. 370, pp. 297-305, 2016.
    [27] S. Tuukkanen, M. Valimaki, S. Lehtimaki, T. Vuorinen, and D. Lupo, "Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display," Scientific Reports, vol. 6, 2016.
    [28] N. C. Abeykoon, J. S. Bonso, and J. P. Ferraris, "Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends," Rsc Advances, vol. 5, pp. 19865-19873, 2015.
    [29] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
    [30] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [31] C. J. Cui, W. Z. Qian, Y. T. Yu, C. Y. Kong, B. Yu, L. Xiang, et al., "Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V," Journal of the American Chemical Society, vol. 136, pp. 2256-2259, 2014.
    [32] A. Ambrosi, T. Sasaki, and M. Pumera, "Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation," Chemistry-an Asian Journal, vol. 5, pp. 266-271, 2010.
    [33] P. Serp, M. Corrias, and P. Kalck, "Carbon nanotubes and nanofibers in catalysis," Applied Catalysis a-General, vol. 253, pp. 337-358, 2003.
    [34] S. Toth, M. Fule, M. Veres, I. Pocsik, and M. Koos, "Supercapacitor electrodes made from mixture of amorphous carbon nano-particles and carbon black," Materials Science, Testing and Informatics III, vol. 537-538, pp. 263-267, 2007.
    [35] R. Q. Wang, Q. Fang, and M. G. Deng, "Template synthesis of activated carbon for supercapacitor," Optoelectronic Materials, Pts 1and 2, vol. 663-665, pp. 568-571, 2010.
    [36] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
    [37] C. Kim, Y. O. Choi, W. J. Lee, and K. S. Yang, "Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions," Electrochimica Acta, vol. 50, pp. 883-887, 2004.
    [38] S. J. Kim, S. W. Hwang, and S. H. Hyun, "Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics," Journal of Materials Science, vol. 40, pp. 725-731, 2005.
    [39] Y. Q. Jiang, Q. Zhou, and L. Lin, "Planar Mems Supercapacitor Using Carbon Nanotube Forests," Ieee 22nd International Conference on Micro Electro Mechanical Systems (Mems 2009), pp. 587-590, 2009.
    [40] J. L. Xia, F. Chen, J. H. Li, and N. J. Tao, "Measurement of the quantum capacitance of graphene," Nature Nanotechnology, vol. 4, pp. 505-509, 2009.
    [41] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors," Science, vol. 335, pp. 1326-1330, 2012.
    [42] Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang, et al., "Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials," Electrochimica Acta, vol. 55, pp. 3904-3908, 2010.
    [43] H. L. Li, J. X. Wang, Q. X. Chu, Z. Wang, F. B. Zhang, and S. C. Wang, "Theoretical and experimental specific capacitance of polyaniline in sulfuric acid," Journal of Power Sources, vol. 190, pp. 578-586, 2009.
    [44] J. Zhang, L. B. Kong, B. Wang, Y. C. Luo, and L. Kang, "In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors," Synthetic Metals, vol. 159, pp. 260-266, 2009.
    [45] S. B. Yoon, E. H. Yoon, and K. B. Kim, "Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications," Journal of Power Sources, vol. 196, pp. 10791-10797, 2011.
    [46] Y. P. Fang, J. W. Liu, D. J. Yu, J. P. Wicksted, K. Kalkan, C. O. Topal, et al., "Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition," Journal of Power Sources, vol. 195, pp. 674-679, 2010.
    [47] R. K. Sharma and L. Zhai, "Multiwall carbon nanotube supported poly(3,4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors," Electrochimica Acta, vol. 54, pp. 7148-7155, 2009.
    [48] J. P. Zheng and T. R. Jow, "A New Charge Storage Mechanism for Electrochemical Capacitors," Journal of the Electrochemical Society, vol. 142, pp. L6-L8, 1995.
    [49] I. H. Kim and K. B. Kim, "Ruthenium oxide thin film electrodes for supercapacitors," Electrochemical and Solid State Letters, vol. 4, pp. A62-A64, 2001.
    [50] T. M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, et al., "Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors," Nano Energy, vol. 10, pp. 288-294, 2014.
    [51] W. Wang, S. R. Guo, I. Lee, K. Ahmed, J. B. Zhong, Z. Favors, et al., "Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors," Scientific Reports, vol. 4, 2014.
    [52] C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, "Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors," Nano Letters, vol. 6, pp. 2690-2695, 2006.
    [53] J. P. Zheng, P. J. Cygan, and T. R. Jow, "Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors," Journal of the Electrochemical Society, vol. 142, pp. 2699-2703, 1995.
    [54] Q. L. Fang, D. A. Evans, S. L. Roberson, and J. P. Zheng, "Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors," Journal of the Electrochemical Society, vol. 148, pp. A833-A837, 2001.
    [55] I. H. Kim and K. B. Kim, "Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications," Journal of the Electrochemical Society, vol. 153, pp. A383-A389, 2006.
    [56] C. C. Hu and Y. H. Huang, "Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors," Journal of the Electrochemical Society, vol. 146, pp. 2465-2471, 1999.
    [57] G. Battaglin, V. Rigato, S. Zandolin, A. Benedetti, S. Ferro, L. Nanni, et al., "Microstructural Characterization and Electrochemical Properties of RuO2 Thin Film Electrodes Prepared by Reactive Radio-Frequency Magnetron Sputtering," Chemistry of Materials, vol. 16, pp. 946-952, 2004.
    [58] S. C. Pang, M. A. Anderson, and T. W. Chapman, "Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide," Journal of the Electrochemical Society, vol. 147, pp. 444-450, 2000.
    [59] B. H. Zhang and N. Zhang, "Research on nanophase MnO2 for electrochemical supercapacitor," Acta Physico-Chimica Sinica, vol. 19, pp. 286-288, 2003.
    [60] V. Subramanian, H. W. Zhu, and B. Q. Wei, "Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material," Journal of Power Sources, vol. 159, pp. 361-364, 2006.
    [61] H. Q. Wang, Z. S. Li, Y. G. Huang, Q. Y. Li, and X. Y. Wang, "A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte," Journal of Materials Chemistry, vol. 20, pp. 3883-3889, 2010.
    [62] X. Y. Xie, C. Zhang, M. B. Wu, Y. Tao, W. Lv, and Q. H. Yang, "Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template," Chemical Communications, vol. 49, pp. 11092-11094, 2013.
    [63] Y. Tian, Z. Y. Liu, R. Xue, and L. P. Huang, "An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method," Journal of Alloys and Compounds, vol. 671, pp. 312-317, 2016.
    [64] X. Zhao, C. Johnston, and P. S. Grant, "A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode," Journal of Materials Chemistry, vol. 19, pp. 8755-8760, 2009.
    [65] D. Dattilo, U. Dietze, and J. W. Hsu, "Ruthenium capping layer preservation for 100X clean through pH driven effects," Photomask Technology 2015, vol. 9635, 2015.
    [66] L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska, and D. Szwagierczak, "Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors," Electrochimica Acta, vol. 168, pp. 246-255, 2015.
    [67] C. F. Zhang and J. S. Yu, "Morphology-Tuned Synthesis of NiCo2O4-Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries," Chemistry-a European Journal, vol. 22, pp. 4422-+, 2016.
    [68] D. G. Mcculloch, S. Prawer, and A. Hoffman, "Structural Investigation of Xenon-Ion-Beam-Irradiated Glassy-Carbon," Physical Review B, vol. 50, pp. 5905-5917, 1994.
    [69] C. K. Hsieh, M. C. Tsai, M. Y. Yen, C. Y. Su, K. F. Chen, C. C. M. Ma, et al., "Direct synthesis of platelet graphitic-nanofibres as a highly porous counter-electrode in dye-sensitized solar cells," Physical Chemistry Chemical Physics, vol. 14, pp. 4058-4061, 2012.
    [70] S. Y. Mar, C. S. Chen, Y. S. Huang, and K. K. Tiong, "Characterization of Ruo2 Thin-Films by Raman-Spectroscopy," Applied Surface Science, vol. 90, pp. 497-504, 1995.
    [71] B. Hudec, K. Husekova, A. Rosova, J. Soltys, R. Rammula, A. Kasikov, et al., "Impact of plasma treatment on electrical properties of TiO2/RuO2 based DRAM capacitor," Journal of Physics D-Applied Physics, vol. 46, 2013.
    [72] H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, "High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies," Journal of Catalysis, vol. 172, pp. 336-345, 1997.
    [73] A. Ananth, M. S. Gandhi, and Y. S. Mok, "A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods," Journal of Physics D-Applied Physics, vol. 46, 2013.
    [74] P. Kurzweil, "Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook," Sensors, vol. 9, pp. 4955-4985, 2009.
    [75] S. Sopcic, Z. Mandic, G. Inzelt, M. K. Rokovic, and E. Mestrovic, "Ion dynamics in the pseudocapacitive reaction of hydrous ruthenium oxide. Effect of the temperature pre-treatment," Journal of Power Sources, vol. 196, pp. 4849-4858, 2011.
    [76] T. C. Wen and C. C. Hu, "Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides," Journal of the Electrochemical Society, vol. 139, pp. 2158-2163, 1992.
    [77] W. C. Fang, O. Chyan, C. L. Sun, C. T. Wu, C. P. Chen, K. H. Chen, et al., "Arrayed CNxNT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications," Electrochemistry Communications, vol. 9, pp. 239-244, 2007.
    [78] L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, R. P. Socha, and D. Szwagierczak, "X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors," Analytica Chimica Acta.
    [79] M. S. Kim, B. Hsia, C. Carraro, and R. Maboudian, "Flexible Micro-Supercapacitors from Photoresist-Derived Carbon Electrodes on Flexible Substrates," 2014 Ieee 27th International Conference on Micro Electro Mechanical Systems (Mems), pp. 389-392, 2014.
    [80] W. H. Cai, T. Lai, and J. S. Ye, "A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors," Journal of Materials Chemistry A, vol. 3, pp. 5060-5066, 2015.
    [81] L. Kou, T. Q. Huang, B. N. Zheng, Y. Han, X. L. Zhao, K. Gopalsamy, et al., "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics," Nature Communications, vol. 5, 2014.
    [82] X. F. Wang, Y. J. Yin, X. Y. Li, and Z. You, "Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures," Journal of Power Sources, vol. 252, pp. 64-72, 2014.
    [83] D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, and D. Guay, "Influence of the configuration in planar interdigitated electrochemical micro-capacitors," Journal of Power Sources, vol. 230, pp. 230-235, 2013.
    [84] E. Eustache, R. Frappier, R. L. Porto, S. Bouhtiyya, J. F. Pierson, and T. Brousse, "Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes," Electrochemistry Communications, vol. 28, pp. 104-106, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE