簡易檢索 / 詳目顯示

研究生: 楊厚怡
Yang, Hou Yi
論文名稱: 含二茂鐵與噻吩寡聚物的Pseudorotaxane所構成之固態分子開關的合成及特性探討
Synthesis and characterization of pseudorotaxanes: solid state molecular switches comprising ferrocene and oligothiophenes
指導教授: 堀江正樹
Masaki Horie
口試委員: 王潔
Wang, Jane
蘇安仲
Su, An Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 75
中文關鍵詞: 超分子分子開關維度變化單晶再結晶
外文關鍵詞: Molecular Switch, Photo-responsive Behavior, Dimension Change, Recrystallization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們合成了一種新穎的超分子,其軸分子由二茂鐵(Ferrocene)和含噻吩寡聚物(Oligo thiophene)的共軛結構所組成;而環分子使用二苯并-24-冠醚-8(Dibenzo-24-crown-8 ether),並且進一步觀察這種結構的Pseudorotaxane在結晶態下的光致變行為。我們使用了核磁共振光譜儀(1H-NMR)、快速原子衝擊游離質譜儀(FAB mass)與元素分析儀(Elemental Analysis)來定性合成的分子。Pseudorotaxane的單晶結構則是使用X-ray單晶繞射儀來進行分析。我們發現,使用氯仿/乙醚系統所產生的單晶,氯仿分子也會出現在晶格中,使得單晶有更平整的表面;然而,使用二氯甲烷/乙醚系統所製備的單晶晶格中,並不會有溶劑分子,因此單晶表面不像使用氯仿/乙醚系統那樣的平滑。我們另外使用附有加熱板的偏振光顯微鏡(POM)、差示掃描量熱法(DSC)以及熱重分析儀(TGA)來進行熱性質的量測。含有雙噻吩(bithiophene)和三噻吩(terthiophene)的pseudorotaxane單晶的熔點分別是178和188ºC。然而我們發現含噻吩寡聚物的pseudorotaxane並不像我們先前論文所研究的含甲苯基的pseudorotaxane一般,在加熱時呈現固態-固態的相變化。在光學性質的量測方面,我們使用了405-nm和445-nm兩種連續波二極管雷射,透過光學顯微鏡裡的光學路徑來照射單晶。在雷射照射下,單晶產生了維度變化,晶體的長度隨著雷射能量提昇而變長,在使用25.05mW能量的405-nm波長雷射照射下,晶體的長度增加了1.229%,是我們所觀測到的最大值。然而晶體的上表面積並不完全呈現相同的變化趨勢,當使用445-nm波長雷射,晶體的上表面積隨著能量提昇而增加,到14.99mW時達到最大值(+0.767%),然後隨著雷射能量繼續增加,上表面積開始縮小,在雷射能量提升到24.97mW時面積下降到+0.483%。


    In this thesis, novel supermolecular pseudorotaxane switches, comprising ferrocenyl group and oligothiophene conjugated group in an axle molecule and dibenzo[24]crown-8 as a ring molecule, have been synthesized to analyze their photo-responsive behaviors in crystal states. The obtained pseudorotaxanes were characterized using 1H NMR spectroscopy, fast atom bombardment mass spectroscopy, and elemental analysis. Crystallographic structure of the pseudorotaxane with bithienyl group was analyzed by single crystal X-ray crystallography. We found that the pseudorotaxane crystals contain chloroform molecule when the crystallization was performed in a chloroform/ether solvent system resulting in the crystals with smoother surface, whereas the crystals do not have any solvent molecules when the crystallization was done in a dichloromethane/ether solvent system. Thermal properties of the single crystals of the pseudorotaxanes were analyzed using polarizing optical microscopy with a hot stage, differential scanning calorimetry, and thermogravimetric analysis. The crystals have a melting point at 178 ºC for the bithiophene pseudorotaxane and 188 ºC for the terthiophene pseudorotaxane. However, these crystals do not show solid-to-solid phase transition, which can be observed for a pseudorotaxane comprising tolyl group instead of oligothiophenes. In addition, photo irradiation test on the pseudorotaxane crystals were performed using 405-nm and 445-nm continuous wave diode lasers incorporating with an optical microscope. The crystals showed dimension change by 405 nm and 445 nm laser irradiation. The crystal length increased with increase in the laser power and maximum change was observed to be 1.229% with the 405-nm laser irradiation with laser power at 25.05 mW. However, area change of a crystal top surface did not follow same tendency. The crystal area reached to the largest area (+0.767%) by 445-nm laser irradiation at 14.99 mW, then this was gradually decreased to +0.483% with increase of the laser power to 24.97 mW.

    Abstract 1 Chapter 1  Introduction 1 1.1 Introduction of supramolecular chemistry 1 1.1.1 Supramolecules 1 1.1.2 Supramolecular chemistry 2 1.1.3 Shape of supramolecules 3 1.2 Molecular switches and machines 5 1.2.1 Artificial molecular switches (AMSs) 7 1.2.2 Artificial molecular machines (AMMs) 9 1.3 Molecular movement in solid state: metal-organic frameworks (MOFs) 12 1.4 Conversion of molecular motion into macroscopic motion 16 1.4.1 Thermo-induced movement of molecules 16 1.4.2 Photo-induced movement of matters caused by molecular motions 19 1.5 Aim of work 27 Chapter 2  Synthesis and characterization of pseudorotaxanes with ferrocene and conjugated block-containing axle molecule 30 2.1 Introduction 30 2.2 Synthesis of pseudorotaxanes 30 2.2.1 Synthesis of bithiophene-containing axle molecule 30 2.2.2 Synthesis of bithiophene-containing pseudorotaxane 33 2.2.3 Synthesis of terthiophene-containing pseudorotaxane 35 2.3 Crystal structure analysis 37 2.4 Thermal properties 40 2.5 Laser irradiation test 44 2.4.1 Laser irradiation test for bithiophene containing pseudorotaxane 44 2.4.2 Laser irradiation to [Fc-3T·DB24C8](PF6) crystal 51 Chapter 3  Conclusion & Future Suggestions 53 Chapter 4  Experimental Section 54 4.1 General Method 54 4.2 Optical setup with laser light 54 4.3 Preparation of Ferrocene methylamine 57 4.4 Preparation of terthiophene carboxaldehyde 59 4.5 Preparation of Bithiophene(ferrocenylmethyl)ammonium hexaflurophosphate,[Fc-2TH]+(PF6)- 60 4.6 Preparation of [2]pseudorotaxane:[Fc-T·DB24C8]+(PF6)- 62 4.7 Preparation of Terthiophene(ferrocenylmethyl)ammonium hexaflurophosphate, [Fc-3TH]+(PF6)- 64 References 67

    [1] K. L. Wolf, H. Frahm, H. Harms, Z Phys. Chem. B-chem. E. 1937, 36, 237-287.
    [2] P. A. G. P.D. Beer, D.K. Smith, Supramolecular Chemistry, Oxford University Press: Great Britain, 1999.
    [3] K. L. Wold, R. Wolff, Angew. Chem-Ger. Edit. 1949, 61, 191-201.
    [4] J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
    [5] J. W. Steed, D. R. Turner, K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley& Sons, Inc., 2007.
    [6] E. Wasserman, J. Am. Chem. Soc. 1960, 82, 4433-4434.
    [7] M. Cesario, C. O. Dietrichbucheeker, J. Guilhem, C. Pascard, J. P. Sauvage, J. Chem. Soc. Chem. Com. 1985, 244-247.
    [8] T. J. Hubin, D. H. Busch, Coordin. Chem. Rev. 2000, 200, 5-52.
    [9] D. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer, J. F. Stoddart, Angew. Chem. Int. Edit. 1994, 33, 1286-1290.
    [10] E. R. Kay, D. A. Leigh, F. Zerbetoo, Angew. Chem. Int. Edit. 2007, 46, 72-191.
    [11] B. Champin, P. Mobian and J. P. Sauvage, Chem. Soc. Rev. 2007, 36, 358-366.
    [12] A. Coskun, M. Banaszak, R. D. Astumain, B. A. Grzybowski, J. F. Stoddart, Chem Soc. Rev. 2012, 41, 19-30.
    [13] J. D. Badjic. V. Balzani, A. Credi. S. Silvi, J. F. Stoddart, Science. 2004, 303, 1845-1849.
    [14] A. J. Vernall, L. A. Stoddart, S. J. Briddon, S. J. Hill, B. Kellam, J. Med. Chem. 2012, 55, 1771-1782.
    [15] J. M. Sprull, W. F. Paxton, J. C. Olsen, D. Benitez, E. Tkatchouk, C. L. Stern, A. Trabolsi, D. C. Friedman, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2009, 131, 11571-11580.
    [16] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollardm J. Vicario, N. Koumura, B. L. Feringa, Nature. 2005, 437, 1337-1340.
    [17] N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 5037-5051.
    [18] Y. Liu, A. H. Flood, P. A. Bonvallett, S. A. Vignon, B. H. Northrop, H. R. Tseng, J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov, S. D. Solares, W. A. Goddard, C. M. Ho, J. F. Stoddart, J. Am. Chem. Soc. 2005, 127, 9745-9759.
    [19] A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19-30.
    [20] V. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456-460.
    [21] M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10771-10776.
    [22] C. S. Vogelsberg, M. A. Garcia-Garibay, Chem. Soc. Rev. 2012, 41, 1892-1910.
    [23] B. Rodriguez-Molina, N. Farfan, M. Romero, J. M. Mendez-Stivalet, R. Santillan, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2011, 133, 7280-7283.
    [24] T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342-347.
    [25] M. Horie, Y. Suzaki, K. Osakada, T. Sassa, D. Hashizume, T. Wada, Angew. Chem., Int. Ed. 2007, 46, 4983-4986.
    [26] M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai, K. Osakada, J. Am. Chem. Soc. 2012, 134, 17932-17944.
    [27] M. Horie, Y Suzaki, K. Osakada, Inorg. Chem. 2005, 44, 5844-5853.
    [28] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. J. Tanabe, J. Am. Chem. Soc. 2002, 124, 104-112.
    [29] Y. Yu, M. Nakano, T. Ikeda, Nature. 2003, 425, 145.
    [30] M. C. Lopez, H. Finkelmann, P. P. Muhoray, M. Shelley, Nat. mater. 2004, 3, 307-309.
    [31] B. Kundys, M. Viret, D. Colson, D. O. Kundys, Nat. mater. 2010, 9, 803-805.
    [32] W. Zhou, Y. J. Guo, D. H. Qu, J. Org. Chem. 2013, 78, 590-596.
    [33] W. Setaka, K. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 14560-14563.
    [34] D. Kitagawa, S. Kobatake, J. Phys. Chem. C 2013, 117, 20887-20892.
    [35] D. Kitagawa, S. Kobatake, Chem. Commun. 2015, 41, 4421-4424.
    [36] P. Commins, M. A. Garcia-Garibay, J. Org. Chem. 2014, 79, 1611-1619.
    [37] W. Li, T. Wei, Y. Gao, K. Xi, X. Jia, Polymer. 2012, 53, 1236-1244.
    [38] Anton Vilsmeier; Haack, A. Ber. 1927, 60, 119.
    [39] Meth-Cohn, O.; Stanforth, S. P. Comp. Org. Syn., 1991, 2, 777–794.
    [40] Formylation of dimethylaniline. Campaigne, E.; Archer, W. L. Org. Syn., Coll. Vol. 4, p.331, 1963; Vol. 33, p.27, 1953.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE