簡易檢索 / 詳目顯示

研究生: 李宜政
Lee, Yi-Cheng
論文名稱: 具有高介電層及鍺或矽鍺通道之金氧半元件電性與物性研究
Electrical and physical characteristics of MOS devices with high-k gate dielectric and Ge or SiGe channel
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 矽鍺金氧半元件
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了持續改善元件的性能,金氧半元件之閘極氧化層(SiO2) 的厚度必須繼續縮小,然而極薄的閘極氧化層常伴隨著高的閘極漏電流,為了減少閘極漏電流,high-k材料已被廣泛使用來取代二氧化矽作為金氧半元件的閘極介電層。然而,high-k材料仍面臨一些技術性的挑戰例如像電荷捕捉和遷移率惡化…等問題。所以為了克服這些因素才有了介面處理,以及通道利用可以提供較高遷移率的含鍺半導體材料,因為純鍺本身對矽而言,載子遷移率電子提升兩倍至於電洞可以提升四倍,對於元件傳輸可以大大得到改善。但是由於鍺的不耐高溫在400℃下產生易揮發的氣體且容易水解,對於元件的電特性會變差,所以勢必要用其它鈍化方式來抑制鍺擴散並且維持含鍺通道元件的電特性。
    本論文首先透過二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)來分析雜質擴散現象,結果發現可靠度SILC和Stress CV方面表現出較佳特性的MOS元件,SIMS分析後的觀察到Ge擴散程度也最小。而在PIII氮化Ta及TaN閘極結構發現,隨著PIII氮化相同閘極結構下的能量增大,其Hf-N的分佈差異不大。而在不同閘極(Ta 、TaN Gate)固定能量下PIII氮化,TaN Gate的Hf-N分佈都比Ta Gate的深, 這代表我們TaN Gate的N會因為PIII氮化時而往high-K擴散。
    而第二部份的(a)、(b)實驗皆以後續PMA550℃為前提下探討最佳鍺磊晶厚度與Si-cap厚度,以利我們未來製作純鍺MOSFET以活化S/D溫度為550℃下的參考磊晶厚度。在純鍺磊晶厚度方面,越薄的鍺磊晶厚度有較佳的電特性,故未來在鍺厚度方面會以較薄的鍺磊晶當作考量。而在Si-cap厚度方面,雖然最厚的Si-cap=40Å厚度下有較好佳的特性,但是較厚的矽覆蓋厚度反而會降低在相同偏壓下對通道載子的控制能力,也就是元件的轉移電導(transconductance)會下降。因此希望Si-cap厚度能越薄越好,當矽覆蓋層厚度降為Si-cap=30Å時,其偏壓從空乏到累積區時電容值下降有些嚴重。所以我們元件在此退火前提下還是需要厚度40Å以上的矽覆蓋層,才足以阻擋鍺的擴散防止其影響元件特性。而在(c)實驗為改變不同矽鍺基板摻雜濃度,摻雜後其偏壓從空乏區到累積區時電容值下降的非常嚴重。矽鍺基板摻雜濃度在C-V以及I-V關係圖仍可發現一致性,也就是隨著摻雜濃度上升,其電容值的下降會越明顯且漏電流會越大。
    由於高濃度矽化鍺無法結晶,所以論文最後探討鍺結晶的問題,結果發現純鍺虛擬基板覆蓋不同TEOS cap厚度後直接退火的結晶法效果不佳。超晶格結構不同純鍺磊晶厚度退火,其中較厚的鍺磊晶層結構XRD圖看出有不錯的鍺結晶效果,在粗糙度方面經過700℃退火後,其表面粗糙度皆有得到改善,但經過900℃退火粗糙度卻都比700℃退火後的來的差,推測是由於strained Ge轉換成relaxed Ge造成的線差排(threading dislocation)導致表面粗糙度的增生。


    目錄 摘要 i 致謝 iii 目錄 v 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1前言 1 1.2使用High-K介電材料的原因 1 1.3高介電材料的選擇 2 1.4矽鍺虛擬基板-應變通道 3 1.5應變對載子遷移率的影響 4 1.6臨界厚度 5 1.7差排 5 1.8鍺氧化物的特性 6 1.9界面缺陷鈍化(Interface defect passivation) 7 1.10論文架構 8 第二章 元件製程與量測 19 2.1 PIII氮化Ta及TaN閘極結構製作流程 19 2.1.1晶片刻號和晶背處理 19 2.1.2閘極介電層沉積 20 2.1.3金屬閘極Ta、TaN沉積與退火處理及PIII氮化 20 2.2不同鍺磊晶與矽覆蓋厚度純鍺虛擬基板之金氧半電容元件製作流程 元件製作流程 20 2.2.1晶片刻號和晶背處理 21 2.2.2磊晶鍺虛擬基板、矽覆蓋層和閘極介電層沉積 21 2.2.3金屬閘極TaN沉積 21 2.3鍺基板不同摻雜濃度之金氧半元件製作流程 22 2.3.1晶片刻號和晶背處理 22 2.3.2磊晶鍺虛擬基板和閘極介電層沉積 22 2.3.3金屬閘極TaN沉積 23 2.4金氧半電容電性量測 23 2.4.1 電容-電壓 (C-V) 特性量測 23 2.4.2 電流-電壓 (I-V) 特性量測 24 2.4.3 遲滯 (Hysteresis) 特性量測 24 2.4.4 Stress-Induced Vfb shift (△Vfb) 特性量測 24 2.5 金氧半電容物性與材料分析 24 2.5.1二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS) 25 2.5.2 X光粉末繞射儀 (X-ray Powder Diffractometer) 26 第三章以二次離子質譜儀分析金氧半元件雜質擴散現象 29 3.1研究動機 29 3.2製程與量測 31 3.2.1製程條件 31 3.2.2測量參數 32 3.3實驗結果與討論 33 3.3.1 SIMS分析介電層HfAlO在各種不同矽鍺堆疊結構虛擬基板電特性與可靠度比較 34 3.3.2 SIMS分析MOS元件具有純鍺虛擬基板及不同矽覆蓋厚度下之電特性與可靠度比較 35 3.3.3 SIMS分析PIII氮化Ta及TaN閘極結構…………..……………..35 3.4結論 36 第四章探討不同鍺磊晶、矽覆蓋厚度及鍺基板不同摻雜濃度對純鍺通道元件的影響 50 4.1研究動機 51 4.2製程與量測 52 4.2.1製程條件 52 4.2.2測量參數 54 4.3實驗結果與討論 55 4.3.1 MOS元件具有不同純鍺虛擬基板磊晶厚度下之電特性與可靠度比較 55 4.3.2 MOS元件具有不同矽覆蓋厚度下之電特性與可靠度比較 58 4.3.3 MOS元件具不同鍺基板摻雜濃度對純鍺通道元件之電特性比較 60 4.4結論 61 第五章高濃度結晶鍺之研究 83 5.1研究動機 83 5.2製程與量測 84 5.2.1製程條件 84 5.3實驗結果與討論 85 5.3.1純鍺虛擬基板覆蓋不同TEOS cap厚度後直接退火 86 5.3.2超晶格結構不同純鍺磊晶厚度退火 86 5.4結論 88 第六章 結論 115 參考文獻 117

    參考文獻
    [1] Iternational Technology Roadmap for Semiconductor, 2003 edition.
    [2] J. H. Stathis, et al, “Reliability Projection for Ultra-Thin Oxides at Low Voltage”, IEEE IEDM, Vol. 71, p. 167-170, 1998
    [3] A. I. Kingon, J. P.Maria, S. K. Streiffer, “Alternative Dielectrics to Silicon Dioxide for Memory and Logic Devices”, Nature 406, p. 1032-1038, 2000
    [4] M. Houssa, et al,“Electrical Properties of High-k Gate Dielectrics:Challenges, Current Issues, and Possible Solutions”, Material Science and Enginerring R, p. 37-85, 2006
    [5] Jack C.Lee, et al., “Ultra-thin Gate Dielectrics and High-k Dielectrics ”, IEEE EDS Vanguard Series of Independent Short Course, p. 202, 2001
    [6] Nan Lu, “High-Permittivity Dielectrics and High Mobility Semiconductors for Future Scaled Technology”,The University of Texas at Austin, Ph.D, 2006
    [7] S, Saito, et al., “Unified Mobility Model for High-K Gate Stacks”, IEEE IEDM, p. 797-800, 2003
    [8] Chee Wee Liu, et al.,“Mobility Enhancement Technology”, IEEE Circuit & Devices Magazine, 2005
    [9] B. M. Haugerud, et al., “Mechanically Induced Strain Enhancement of Metal–Oxide–Semiconductor Field Effect Transistors”, J.Appl.Phys , Vol. 94, No. 6, 2003
    [10] R. People and J.C Bean, “Calculation of Critical Layer Thickness Versus Lattice Mismatch for GexSi1-x/Si Strained-layer Heterostructures”, App.Phys.Lett, Vol. 47, p. 322, 1985
    [11] R. Zhang,“Electronic Defect Characterization of Strained-Si/SiGe/Si Heterostructure ”, North Carolina State University, Ph. D., 2006
    [12] http://www.sp.phy.cam.ac.uk/~SiGe/PhDs%20in%20SiGe%20Research%20at%20Cambridge.html
    [13] Weiping Bai, et al,“The Electrical Properties of HfO2 Dielectric on Germanium and the Substrate Doping Effect”, IEEE Trans. Electron Devices, Vol. 53, No. 10, 2006
    [14] C. Claeys, et al.,“Processing and Defect Control in Advanced Ge Technologies ”, IEEE IEDST, 2007
    [15] Koji Kita, et al.,“ Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics”,
    J.J.Appl.Phys, Vol. 47, p. 2349-2353, 2008
    [16] T. Takahashi, et al.,“ Proof of Ge Interface Concepts for Metal/High-k/Ge CMOS”, IEEE, p. 697-700, 2007
    [17] S. Takagi, et al., “Gate Dielectric Formation and MIS Interface Characterization on Ge ”, Microelectronic Engineering, Vol. 84, p. 2314-2319, 2007
    [18] Yoshiki Kamata,“High-K/Ge MOSFETs for Future Nanoelectronics”, Materialstoday, Vol. 11, 2008
    [19] Sachin Joshi,et al., “ Improved Ge Surface Passivation With Ultrathin SiOX Enabling High-Mobility Surface Channel PMOSFETs Featuring a HfSiO/WN Gate Stack”, IEEE Electron Device Letters, Vol. 28, p. 308-311, 2007
    [20] W. P. Bai, et al., “ Si Interlayer Passivation on Germanium MOS Capacitors With High-K Dielectric and Metal Gate ”, IEEE Electron Device Letters, Vol. 26, p.378-380, 2005
    [21] S. Petitdidier, et al.,“Growth Mechanism and Characterization of Chemical Oxide Films Produced in Peroxide Mixtures on Si(100) Surfaces”, Thin Solid Films,Vol. 476, p. 51-58, 2005
    [22] D.C. Houghton,“ Strain Relaxation Kinetics In SiGe/Si Heterostructures ”, J. Appl. Phys, Vol. 70, p. 2136-2151, 1991
    [23] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
    [24] H.-S. P. Wong,“Beyond the Conventional Transistor”, IBM J. Res. & Dev, Vol. 46, p. 133-168, 2002
    [25] Laura M. Giovane, et al., “ Correlation Between Leakage Current Density and Threading Dislocation Density in SiGe p-i-n Diodes Grown on Relaxed Graded Buffer Layers” , Appl. Phys. Lett, Vol .78, No. 4, 2001
    [26] N. V. Nguyen, et al., Appl. Phys. Lett., 77, 3012 (2000).
    [27] P. T. Gao, et al., Thin Solid Films, 377, 557 (2000).
    [28] K. Kukli, et al., Thin Solid Films, 260, 135 (1995).
    [29] M. Cassir, et al., Appl. Surf. Sci., 193, 120 (2002).
    [30] C. M. Perkins, et al., Appl. Phys. Lett., 78, 2357 (2001).
    [31] C. Chaneliere, et al., Microelectron. Reliab., 39, 261 (1999).
    [32] D. D. L. Chung, et al., X-Ray Diffraction at Elevated Temperatures: A Method for In-Situ Process Analysis, Chap.1, VCH Publishers, New York (1993).
    [33] 杜立偉,“應用電漿佈植氮化及矽覆蓋層以提升具有矽化鍺或鍺通道之金氧半元件電特性研究”,國立清華大學工程與系統科學系,2009
    [34] Chia Ching Yeo, et al.,“Electron Mobility Enhancement Using Ultrathin Pure Ge on Si Substrate”, IEEE Electron Device Letters, Vol. 26, No. 10, p. 761-763, 2005
    [35] Goutam Kumar Dalapati, et al., “ Impact of Strained-Si Thickness and Ge Out-Diffusion on Gate Oxide Qualityfor Strained-Si Surface Channel n-MOSFETs” , IEEE Trans. Electron Devices, Vol. 53, No. 5, 2006
    [36] Pei-Jer Tzeng, et al.,“Physical and Reliability Characteristics of Hf-based Gate Dielectrics on Strained-Si1-xGex MOS Devices” IEEE Trans. Device and Materials Reliability, Vol. 5, No. 2, p. 168-176, 2005
    [37] C. W. Liu, et al.,“SiGe/Si Heterostructures”, Encyclopedia of Nanoscience and Nanotechnology, Vol. 9, p. 775-792, 2004
    [38] S. Maikap, et al.,“Electrical Characterization of Si/Si1-XGeX/Si Quantum Well Heterostructures Using a MOS Capacitor”, Solid-State Electronics, Vol. 44, p. 1029-1034, 2000
    [39] S. Maikap, et al.,“Electrical characterization of ultra-thin gate oxides on Si/Si1−x−yGexCy /Si quantum well heterostructures”, Semicond. Sci. Technol., Vol.15, p. 761-765, 2000
    [40] Qing-Qing Sun, et al.,“Impact of germanium related defects on electrical performance of hafnium oxide”, Appl. Phys. Lett., Vol. 92 , p. 102908 , 2008
    [41] Ook Sang Yoo, et al.,“Effect of Si Capping Layer on the Interface Quality and NBTI of High Mobility Channel Ge-on-Si p-MOSFETs”, Microelectronic Engineering, 2008
    [42] Young-Joo Song, et al.,“Effects of Si-cap Layer Thinning and Ge Segregation on the Characteristics of Si/SiGe/Si Heterostructure p-MOSFETs”, Solid-State Electronics, Vol.46, p. 1983-1989, 2002
    [43] Satoshi Kamiyama, et al.,“Improvement in the uniformity and the thermal stability of Hf-silicate gate dielectric by plasma-nitridation”, IWGI, Tokyo, p. 46, 2003
    [44] Motoyuki Sato, et al.,“Performance and Reliability Improvement of HfSiON Field-Effect Transistor with Low Hafnium Concentration Cap Layer Formed by Metal Organic Chemical Vapor Deposition with Diethylsilane”, J. J. Appl. Phys., Vol. 47 , p.879-884, 2003
    [45] H. J. Cho, et al., “High-K Dielectrics and MOSFET Characteristics”, IEEE IEDM, 2003
    [46] L. Wang, K. Xue, et al., “Effects of Plasma Immersion Ion Nitridation on Dielectric Properties of HfO2”, Appl. Phys. Lett., Vol. 90, p.122901, 2007
    [47] Mukesh Kumar, et al., “Semiconductor Applications of Plasma Immersion Ion Implantation Technology”, Bull. Mater. Sci., Vol. 25, No. 6, p.549-551, 2002
    [48] N.W. Cheung, “Plasma Immersion Ion Implantation for Semiconductor Processing”, Materials Chemistry and Physics, Vol.46, p.132-139, 1996
    [49] P. K. Chu, et al., “Principles and Characteristics of a New Generation Plasma Immersion Ion Implanter ”, Rev. Sci. Instrum, Vol. 68, p.1866-1874, 1997
    [50] 蔡文發,“電漿源原理與應用之介紹”, 物理雙月刊第二十八卷二期, 2006
    [51] Kazuyoshi Torii, et al., IEEE EDL, Vol. 53, p. 323, 2006
    [52] Jungwoo Oh, et al., “Improved Electrical Characteristics of Ge-on-Si Field-Effect Transistors With Controlled Ge Epitaxial Layer Thickness on Si Substrates” ,IEEE EDL,Vol.28,No.11,November 2007
    [53] Qingchun Zhang, et al.,“Germanium Incorporation in HfO2 Dielectric on Germanium Substrate”, Journal of The Electrochemical Society, Vol. 153, p. G207-G210, 2006
    [54] NDL, http://www.ndl.org.tw/web/index.html
    [55] Naoharu Sugiyama, et al.,“Variation of Threshold Voltage in Strained Si Metal–Oxide–Semiconductor Field-Effect Transistors Induced by Non-uniform Strain Distribution in Strained-Si Channels on Silicon–Germanium-on-Insulator Substrates”, J. J. Appl. Phys., Vol. 47, p. 4403-4407, 2008
    [56] Toshinori Numata, et al,“Control of Threshold-Voltage and Short-Channel Effects in Ultrathin Strained-SOI CMOS Devices”, IEEE Trans. Electron Devices, Vol. 52, p.1780-1786, 2005
    [57] Ammar Nayfeh, et al, “Effects of hydrongen annealing on heteroepitaxial-Ge layers on Si:Surface roughness and electrical quality”, APL, Vol. 85,October 2004
    [58] Hai-Yan Jin, et al, “Forming Gas Annealing Characteristics of Germanium-on-Insulator Substrates”,IEEE. EDL, Vol.29,No7,July 2008
    [59] 張維仁,“應用矽化鍺通道於電荷陷阱式快閃記憶體元件之電特性研究”,國立清華大學工程與系統科學系,2010
    [60] F. Edelman, et al, “Initial crystallization stage of amorphous germanium films”, J. Appl. Phys., vol. 72,p5153, 1992
    [61] S.R. Sheng, M. Dion, S.P. McAlister, N.L. Rowell, “Growth and characterization of Si/SiGe and Si substrates superlattices on bulk single-crystal SiGe and Si substrates” in Journal of Crystal Growth,253,77-84,2003

    [62] J.M. Hartmann, et al, “Growth of SiGe/Si superlattices on silicon-on-insulator substrates for multi-bridge channel field effect transistors” in Journal of Crystal Growth 283 (2005) 57–67

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE