研究生: |
劉又瑞 |
---|---|
論文名稱: |
非慣性網格系統於微氣泡浮升問題之應用 |
指導教授: | 李雄略 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 微氣泡 、浮升 、非慣性座標 、雙區網格法 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了一個簡便的數值方法,在靜水中模擬微氣泡浮升,利用雙區網格法,使氣泡周圍之網格加密,以便於觀察氣泡周圍變化較劇烈之流場變化,而距離氣泡較遠之流場則採用較寬之網格間距,節省不必要之數值運算,同時當雙氣泡浮升時,亦可分別觀察兩氣泡之流場變化。而雙區網格法之成功關鍵則為網格系統間之資料傳遞,在網格系統之重疊處必須準確地做資料交換,不斷循環運算,使流場特性具有連續性,也符合物理現象。
本文另一個突破,則是將兩顆微氣泡放在同一靜止流場中浮升,採用兩種座標系統,氣泡使用非慣性座標,其餘流場則採用靜止座標,如此搭配下,使兩氣泡能隨意在流場中移動,其中數值方法的處理則為此處之關鍵。當兩顆氣泡浮升後,上方氣泡之底部壓力較弱,使下方氣泡逐漸加速,距離越來越近,直到兩氣泡間僅剩一格網格間距,下一個時距預測將會碰撞成同一顆體積為兩倍大之氣泡。本文由於對氣泡形狀之假設限制,使氣泡在撞擊時的形狀劇烈變化無法模擬,未來若將此部分完成,則可完整的分析兩氣泡浮升過程之流場變化。
[1] Duineveld, P. C., 1995, “The Rise Velocity and Shape of Bubbles in Pure Water at High Reynolds Number,” J. Fluid Mechanics, 292, pp. 325-332.
[2] Wu, M., and Gharib, M., 2002, “Experimental Studies on the Shape and Path of Small Air Bubble Rising in Clean Water,” Physics of Fluids, 14, pp. L49-L52.
[3] Ortiz-Villafuerte, J., Hassan, Y.A., and Schmidl, W. D., 2001, “Rocking Motion, Trajectory and Shape of Bubbles Rising in Small Diameter Pipes,”Experimental Thermal and Fluid Science, 25, pp. 43-53.
[4] Zun., I., 1980, “The Transverse Migration of Bubbles Influenced by Walls in Vertical Bubbly Flow,” Int. J. Multiphase Flow, 6, pp. 583-588.
[5] Takemura, F., Takagi, S., Magnaudet, J., and Matsumoto, Y., 2002, “Drag and Lift Forces on a Bubble Rising near a Vertical Wall in a Viscous Liquid,” J. Fluid Mechanics, 461, pp. 277-300.
[6] Krishna, R., Urseanu, M.I., Von Baten, J.M., and Ellenberger, 1999, “Wall Effects on the Rise of Single Gas Bubbles in Liquids,” Int. Comm. Heat Mass Transfer, 26, pp. 781-790.
[7] De Tezanos Pinto, M., Abraham., M. A., and Cerro., R. L., 1997, “How To Bubbles Enter A Capillary” Chemical Engineering Science, 52, No. 11, pp. 1685-1700.
[8] Hirt, C. W., and Nichols, B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of free Boundaries,” Journal of Computational Physics, 39, pp. 201-225.
[9] Lee, S. L., and Sheu,S. R., 2001, “A New Numerical Formulation for Incompressible Viscous Free Surface Flow without Smearing the Free Surface,” Int. J. Heat Mass Transfer, 44, pp. 1837-1848.
[10] Shirani, E., Ashgriz, N., and Mostaghimi, J., 2005,“Interface Pressure Calculation Based on Conservation of Momentum for Front Capturing methods,”Journal of Computational Physics, 203, pp. 154-175.
[11] Magnaudet, J.,Rivero, M., and Fabre, J., 1995,“Accelerated Flows Past A Rigid Sphere or A Spherical Bubble. Part 1. Steady Straining Flow,”Journal of Fluid Mechanics, 284, pp. 97-135.
[12] Moore, D. W., 1963, “The Boundary Layer on a Spherical Gas Bubble,” Journal of Fluid Mechanics, 16, pp. 161-176.
[13] Moore, D. W., 1965, “The Velocity of Rise of Distorted Gas Bubbles in A Liquid of Small Viscosity,” Journal of Fluid Mechanics,23,pp.749-766.
[14] 張元榕, 2005,微氣泡於垂直方管內上升之研究,國立清華大學碩士論文,新竹,台灣。
[15] Lee, S. L., and Tzong, R. Y., 1992, “Artificial Pressure for Pressure-Linked Equation,” Int. J. Heat Mass Transfer, 35, pp. 2705-2716.
[16] Lee, S. L., and Sheu, S. R., 2003, “Filling Process in an Open Tank,”ASME J. of Fluids Engineering, 125, pp. 1016-1021.
[17] Li, L., Sherwin, S. J., and Bearman, P. W., 2002, “A Moving Frame of Reference Algorithm for Fluid/Structure Interaction of Rotating and Translating bodies,” Int. J. for Numerical Methods in Fluids,38,pp.187-206.
[18] Lee, S. L., 1989, “Weighting Function Scheme and Its Application on Multidimensional Conservation Equations,” Int. J. Heat Mass Transfer, 32, pp. 2065-2073.
[19] Lee, S. L., and Tzong, R. Y., 1991, “An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface,” International Journal of Heat and Mass Transfer, 34, pp. 1491-1502.
[20] Lee, S. L., 1989, “A Strongly Implicit Solver for 2-Dimensional Elliptic Differential-Equations,” Numerical Heat Transfer, 16, pp. 161-178.
[21] Hadamard, J., 1911, “Mouvement Permanent Lent d’une Sphere Liquide Visqueuse dansun Liquid Visqueux,” C., R., Acad. Sci. Paris Ser. A-B, 152, pp. 1735-1739.
[22] Hua, J., Stene, J. F., and Lin, P., 2008, “Numerical Simulation of 3D Bubbles Rising in Viscous Liquids Using A Front Tracking Method,” Journal of Computational Physics, 227, pp. 3358-3382.
[23] Unverdi, S.O., and Tryggvason, G., 1992, “A Front-Tracking Method for Viscous, Incompressible, Multifluid Flows,” Journal of Computational Physics, 100, pp. 25-37.
[24] Tomiyama, A., Celata, G. P., Hosokawa, S., and Yoshida, S., 2002, “Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime,” Int. J. Multiphase Flow, 28, pp. 1497-1519.