研究生: |
吳昱賢 |
---|---|
論文名稱: |
透明可撓式二氧化鈦與氮摻雜二氧化鈦摻雜石墨烯場效電晶體之研究 Investigation on the TiO2 and N-doped TiO2 -doped Graphene for Synthesizing Flexible Transparent Field Effect Transistor |
指導教授: | 戴念華 |
口試委員: |
戴念華
李紫原 邱博文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 石墨烯 、透明可撓電晶體 、二氧化鈦 、光感測 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯(Graphene)為一單層碳原子材料,具有特殊的光學與電學性質、優良的化學穩定性以及高載子遷移率,這些獨特的性質,使石墨烯具備取代矽材料作為電子元件的潛力。此外,如藉由不同物質之摻雜,遂可改變石墨烯的傳導特性,而可製作出P型或N型場效電晶體。故本研究以熱化學氣相沉積系統於電解拋光銅箔上成長大面積的單層石墨烯,並轉印至可撓高分子聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)基板上,以製作可撓性透明場效電晶體;並利用二氧化鈦與氮摻雜二氧化鈦奈米顆粒對石墨烯進行摻雜,以改變石墨烯的電性與提高石墨烯的載子遷移率,並使其具有紫外光與可見光的感光特性。研究中使用拉曼光譜儀、光學顯微鏡、場發射電子顯微鏡探討實驗參數對石墨烯成長及轉印結果的影響,並以紫外光-可見光光譜儀分析石墨烯的吸光率,及原子力顯微鏡量測單層石墨烯的厚度。另一方面,利用X光繞射儀與光致發光光譜儀鑑定二氧化鈦與氮摻雜二氧化鈦奈米顆粒的基本物性,並以化學分析電子能譜儀分析氮摻雜二氧化鈦之化學鍵結與元素含量。在場效電晶體量測上,以多探針量測系統量測元件之電學性質,並探討紫外光與可見光光源照射及彎曲條件對電性之影響。
研究結果顯示,於電解拋光銅箔上成長之單層石墨烯,其厚度、吸光率與載子遷移率分別為0.4-0.7 nm、2.39%與1900 cm2/V∙s。經二氧化鈦與氮摻雜二氧化鈦(氮含量:1.4 at.%)摻雜後,其呈現出N型摻雜的效果,且分別使石墨烯載子遷移率提升至53000 cm2/V∙s與31000 cm2/V∙s。進一步透過紫外光與可見光照射可發現,由於二氧化鈦與氮摻雜二氧化鈦內電子-電洞對之產生,激發電子可傳遞至石墨烯通道中,而呈現N型傳導特性;於照射後,電性可於5分鐘內回復至初使狀態,故證實摻雜後此電晶體元件亦兼具紫外光與可見光之感測性。在撓曲測試上,其結果顯示當曲率半徑大於2.0 cm時,載子遷移率無明顯變化。
Graphene, a monolayered carbon material with hexagonal structure, has attracted intensive attention due to its unique optoelectrical properties, excellent chemical stability and high carrier mobility, which shows potential for replacing silicon in semiconductor industry. In addition, by doping various species one could tailor the transfer properties of graphene and construct P-type or N-type field-effect-transistor devices. In this study, large-area and single-layer graphene was grown on the electropolished Cu foil by the thermal chemical vapor deposition method and transferred on a polyethylene terephthalate substrate to fabricate flexible transparent field-effect-transistors. TiO2 and N-doped TiO2 nanoparticles were doped on the graphene to alter the electric properties of graphene, enhance the carrier mobility of graphene and make transistors possess optical sensing of UV and visible light. Graphene growth and transferring were characterized by Raman spectroscopy, field-emission scanning electron microscopy, and optical microscopy; the absorbance and thickness of graphene were measured using UV-Vis spectrophotometer and atomic force microscopy, respectively. On the oher hand, the physical properties of TiO2 and N-doped TiO2 nanoparticles were identified by X-ray diffractometer and photoluminescence spectroscopy, and the chemical bonding and element content of N-doped TiO2 nanoparticles were investigated by ESCA. Electrical properties of the fabricated FETs were examined by a multi-probe system and the influences of irradiation of UV and visible light and bending test on electrical propeties were also analyzed.
The results indicate that the thickness, absorbance, and carrier mobility of the graphene were 0.4-0.7 nm, 2.39%, and 1900 cm2/V∙s, respectively. Doping of TiO2-doped and N-doped TiO2 (N: 1.4 at.%) leads to a N-type doping effect and the carrier mobility of graphene were improved to 53000 cm2/V∙s and 31000 cm2/V∙s, respectively. By UV and visible light irradiation, TiO2 and N-doped TiO2 generated electrons and holes, and the generated electrons transferred to graphene channels, which caused FETs to show N-type electric behavior. Moreover, the electric properties of graphene returned back to their initial state within 5 min, confirming that the graphene FETs showed photosensitive to UV and visible light. Under the bending of the curvature radius higher than 2.0 cm, the carrier mobility of the FETs were not substantially changed.
參考文獻
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode”, Physical Review, Vol. 74, pp. 230-231, 1948.
[2] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Honec, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, Vol. 146, pp. 351-355, 2008.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004.
[5] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics, Vol. 4, pp. 611-622, 2010.
[6] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009.
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
[8] M. I. Katsnelson and K. S. Novoselov, “Graphene: new bridge between condensed matter physics and quantum electrodynamics”, Solid State Communications, Vol. 143, pp. 3-13, 2007.
[9] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler and Tapash Chakraborty, “Properties of graphene: a theoretical perspective”, Advances in Physics, Vol. 59, No. 4, pp. 261-482, 2010.
[10] B. Partoens and F. M. Peeters, “From graphene to graphite: electronic structure around the K point”, PHYSICAL REVIEW B, Vol. 74, pp. 075404(11), 2006.
[11] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
[12] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, Vol. 143, pp. 92-100, 2007.
[13] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, p. 1339, 1958.
[14] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[15] S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, Vol. 4, pp. 217-224, 2009.
[16] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
[17] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Vol. 45, pp. 1558-1565, 2007.
[18] S. Y. Chee, H. L. Poh, C. K. Chua, F. Šaněk, Z. Sofer and M. Pumera, “Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide”, Physical Chemistry Chemical Physics, Vol. 14, pp. 12794-12799, 2012.
[19] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B, Vol. 110, pp. 8535-8539, 2006.
[20] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chemistry of Materials, Vol. 19, pp.4396-4404, 2007.
[21] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek and M. Siaj, “Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors”, Carbon, Vol. 49, pp. 4204-4210, 2011.
[22] G. Kalita, K. Wakita, M. Umeno, Y. Hayashi and M. Tanemura, “Synthesis of continuous graphene on metal foil for flexible transparent electrode application”, in IEEE 5th International Nanoelectronics Conference, pp. 281-284, 2013.
[23] J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
[24] P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt (111): growth and substrate interaction”, Physical Review B, Vol. 80, pp. 245411 (10), 2009.
[25] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu and H. Gao, “Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001)”, Advanced Materials, Vol. 20, pp. 1-4, 2008.
[26] J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. M. zu Heringdorf, R. van Gastel, B. Poelsema and T. Michely, “Growth of graphene on Ir (111)”, New Journal of Physics, Vol. 11, pp. 023006 (22), 2009.
[27] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 113103 (3), 2008.
[28] C. Mattevi, H. Kim and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper”, Journal of Materials Chemistry, Vol. 21, pp. 3324-3334, 2011.
[29] 劉書宏,「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,博士論文,國立交通大學,中華民國九十五年七月
[30] 洪榮洲,「結合細微放電與電解拋光之微孔加工研究」,碩士論文,國立中央大學,中華民國九十三年六月
[31] S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li and M. S. Feng, “Microleveling mechanisms and applications of electropolishing on planarization of copper metallization”, Journal of Vacuum Science & Technology B, Vol. 20, pp. 2149-2153, 2002.
[32] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson, “Effect of substrate roughness and feedstock concentration on growth of wafer-Scale graphene at atmospheric pressure”, Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
[33] R. Lv, M. Terrones, “Towards new graphene materials: doped graphene sheets and nanoribbons”, Materials Letters, Vol. 78, pp. 209-218, 2012.
[34] Y. Zhang, T. T. Tang, C. Girit1, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene”, Nature, Vol. 459, pp. 820-823, 2009.
[35] M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong and P. J. Kelly, “Electrostatic doping of graphene through ultrathin hexagonal boron nitride films”, Nano Letters, Vol. 11, pp. 4631-4635, 2011.
[36] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes”, ACS NANO, Vol. 4, pp. 3839-3844, 2010.
[37] A. A. Kaverzin, S. M. Strawbridge, A. S. Price, F. Withers, A. K. Savchenko, D. W. Horsell, “Electrochemical doping of graphene with toluene”, Carbon, Vol. 49, pp. 3829-3834, 2011.
[38] D. We, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Letters, Vol. 9, No. 5, pp. 1752-1758, 2009.
[39] H. Medina, Y. C. Lin, D. Obergfell and P. W. Chiu, “Tuning of charge densities in graphene by molecule doping”, Advanced Functional Materials, Vol. 21, pp. 2687-2692, 2011.
[40] H. Yoo, Y. Kim, J. Lee, H. Lee, Y. Yoon, G. Kim, and H.Lee, “n-Type reduced graphene oxide field-effect transistors (FETs) from photoactive metal oxides”, Chemistry - A European Journal, Vol. 18, pp. 4923-4929, 2012.
[41] X. Wang, L. Zhi and K. Müllen, “Transparent, conductive graphene electrodes for dye-Sensitized solar cells”, Nano Letters, Vol. 8, No. 1, pp. 323-327, 2008.
[42] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, pp. 063124 (3), 2007.
[43] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, pp. 14095-14107, 2000.
[44] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy”, Nano Letters, Vol. 10, pp. 751-758, 2010.
[45] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports, Vol. 473, pp. pp. 51-87, 2009.
[46] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phononcoupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
[47] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen and A. T. S. Wee, “Raman studies of monolayer graphene: the substrate effect”, The Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.
[48] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, Vol. 97, pp. 187401 (4), 2006.
[49] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang and J. R. Gong, “Controllable N-doping of graphene”, Nano Letters, Vol. 10, pp. 4975-4980, 2010.
[50] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotechnology, Vol. 3, pp. 210-215, 2008.
[51] L. Zhang, S. Diao, Y. Nie, Kai Yan, N. Liu, B. Dai, Q. Xie, A. Reina, J. Kong and Z. Liu, “Photocatalytic patterning and modification of graphene”, Journal Of The American Chemical Society, Vol. 133, pp. 2706-2713, 2011.
[52] A. Yu, G. Wu, F. Zhang, Y. Yang and N. Guan, “Synthesis and characterization of N-doped TiO2 nanowires with visible light response”, Catalysis Letters, Vol. 129, pp. 507-512, 2009.
[53] M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek and L. Kavan, “Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers”, Chemistry of Materials, Vol. 22, pp. 4045-4055, 2010.
[54] R. Silveyra, L. D. L. T. Sa´enz, W. A. Flores, V. C. Martı´nez and A. A. Elgue´zabal, “Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation”, Catalysis Today, Vol. 107-108, pp. 602-605, 2005.
[55] K. Kobayakawa, Y. Murakami and Y. Sato, “Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 170, pp. 177-179, 2005.
[56] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. BLAKE, M. I. Katsnelson and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials, Vol. 6, pp. 652-655, 2007.
[57] B. N. Szafranek, D. Schall, M. Otto, D. Neumaier and H. Kurz, “High on/off ratios in bilayer graphene field effect transistors realized by surface dopants”, Nano Letters, Vol. 11, pp. 2640-2643, 2011.
[58] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc and S. K. Banerjee, “Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 dielectric”, Applied Physics Letters, Vol. 94, pp. 062107 (3), 2009.
[59] Z. Zhang, H. Xu, H. Zhong and L. M. Peng, “Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements”, Applied Physics Letters, Vol. 101, pp. 213103 (4), 2012.
[60] B. J. Kim, H. Jang, S-K. Lee, B. H. Hong, J-H. Ahn and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics”, Nano Letters, Vol. 10, pp. 3464-3466, 2010.
[61] X. Yu, J. Kang, J. Zhang, L. Tian and Z. Yu, “Improving channel mobility in graphene-FETs by minimizing surface phonon scattering - a simulation study”, in Simulation of Semiconductor Processes and Devices, pp. 13-16, 2010.
[62] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Dielectric screening enhanced performance in graphene FET”, Nano Letters, Vol. 9, No. 7, pp. 2571-2574, 2009.
[63] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Ionic screening of charged-impurity scattering in graphene”, Nano Letters, Vol. 9, No. 4, pp. 1621-1625, 2009.
[64] K. M. McCreary, K. Pi and R. K. Kawakami, “Metallic and insulating adsorbates on graphene”, APPLIED PHYSICS LETTERS, Vol. 98, pp. 192101(3), 2011.
[65] P. R. Wallace, “The band theory of graphite”, PHYSICAL REVIEW, Vol. 71, No. 9, pp. 622-634, 1947.
[66] T. T. Chen, H. P. Liu, Y. J. Wei, I. C. Chang, M. H. Yang, Y. S. Lin, K. L. Chan, H. T. Chiu and C. Y. Lee, “Porous titanium oxynitride sheets as electrochemical electrodes for energy storage”, Nanoscale, Vol. 6, pp. 5106–5109, 2014.
[67] W. Song, S. Y. Kwon, S. Myung, M. W. Jung, S. J. Kim, B. K. Min, M. A. Kang, S. H. Kim, J. Lim and K. S. An, “High-mobility ambipolar ZnO-graphene hybrid thin film transistors”, Scientific Reports, Vol. 4, pp. 4064(6), 2014.
[68] W. Song, Y. Kim, S. H. Kim, S. Y. Kim, M. J. Cha, I. Song, D. S. Jung, C. Jeon, T. Lim, S. Lee, S. Ju, W. C. Choi, M. W. Jung, K. S. An and C. Y. Park, “Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films”, APPLIED PHYSICS LETTERS, Vol.102, NO.5, pp. 053103(5), 2013.
[69] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liua and J. Shen, “Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid”, New Journal of Chemistry, Vol. 36, pp. 1385-1391, 2012.
[70] D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation”, Journal of Materials Science, Vol. 46, pp. 855-874, 2011.