簡易檢索 / 詳目顯示

研究生: 何日森
Ho, Jih-Sen
論文名稱: 以C4-對稱釩酸鹽中心之四聚簇狀體,作為增效式金屬離子之篩選及其在向列相液晶中的不對稱轉譯作用和手性放大
Metal-Ion Specific Recognition by Asymmetric Transcription and Amplification of Metal ion-encapsulated, Vanadyl Quardruplexes in Nematic LC
指導教授: 陳建添
口試委員: 徐秀福
韓建中
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92, 65
中文關鍵詞: C4-對稱釩酸鹽四聚簇狀體金屬離子篩選液晶手性放大
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   我們於單體氧釩錯合物亞柳胺基模板的 C(5) 位置接上向列相液晶分子的片段,並利用此單體與偏釩酸鹽增效式自組裝,並利用與四個單體上羥基鍵結力較弱的鋰離子,交換成其它金屬離子。將這些鉗合不同金屬離子之簇狀四聚體摻雜於 E7 液晶主層材料中,利用偏光顯微鏡下觀察其螺距變化。因為接在四聚簇狀體上的向列項液晶片段與 E7 主層材料結構相似,彼此之間 pi–pi 及偶極作用力強,所以 E7 液晶分子的螺旋排列方式對四聚簇狀體結構的改變非常靈敏。若鉗合離子的半徑越大,會造成四聚簇狀體底盤較為緊密;由 Li+ 到 Rb+ 之四聚簇狀體離子半徑越大,造成亞柳胺基上所接的四條向列項液晶片段的手臂越近,而導致螺旋扭張力逐漸下降。對於這些金屬離子 Rb+ (152 pm) > K+ (138 pm) > Ag+(115 pm) > Na+ (102 pm) > Li+ (76 pm),離子半徑大約只相差 13-26 pm 的變化,但其螺距大小差異卻能夠不對稱手性放大至 1.3-2.1 um (或以 Grandjean-Cano 楔形槽測得之 Cano’s lines 差異為 39-76 um),約十萬倍 (約三百萬倍)。旋轉扭張力 (Y軸) 與離子半徑 (X軸) 呈現線性關係。


    A tailor-designed vanadyl methoxide complex bearing p-heptoxyphenyl group (i.e., a nematic LC like fragment) at the C5 position of the salicylidene template was synthesized and then subjected to LiVO3-induced self assembly to form loosely bound, Li+-encapsulated quadruplexes. These cluster complexes were utilized as chiral dopants (1% by weight) to nematic LC materials. A systematic survey regarding the effect of the encapsulated metal ions within the alkali family and Ag+ on the changes of helical pitch was performed and determined by Grandjean method in wedge cells viewed under polarized microscopic scope. It was found that the twisting power or helical pitch induced by a chiral quadruplex dopant is very responsive to its modulable helical shape due to its π-π and dipole-dipole interactions with a nematic LC host. By increasing the size of the encapsulated metal ion from Li+ to Rb+ in the quadruplex by dynamic metal-ion specific swapping, its four lower rim regions of the resulting cluster (i.e, the four p-heptoxyphenyl groups) get closer, thus inducing less helical twisting to the nematic LC phase. Notably, the ion size change [Rb+ (152 pm) > K+ (138 pm) > Ag+(115 pm) > Na+ (102 pm) > Li+ (76 pm)] among the encapsulated metal ions is only around 13-26 pm. This information can be asymmetrically amplified to 1.3-2.1 um pitch change in LC phase. Therefore, the overall extent of amplification reaches 100000 times in terms of helical pitch change. A linear correlation between the induced helical pitch (Y-axis) and the ionic radius of a metal ion (X-axis) was established.

    目錄 中文摘要 Abstract 流程目錄………………………………………………………………….I 圖目錄…………………………………………………………………...II 表目錄…………………………………………………………………VI 第一章 緒論 第一節、前言……………………………………………………………1 第二節、自然界金屬陽離子通道之研究 壹、KcsA-K+ 離子通道…………………………………………………4 貳、鈣離子與蛋白質自組裝生成具有 C4-對稱四聚簇狀體…………6 第三節、非自然界金屬陽離子載體之研究 壹、冠狀醚類衍生物……………………………………………………7 貳、具自組裝能力的鳥嘌呤核苷分子應用在離子載體系統…………8 參、芳杯化合物之離子載體及螢光指示劑……………………………12 第四節、液晶掌性添加劑 壹、向列相至膽固醇相之相轉移………………………………………21 貳、掌性添加劑與液晶分子主層材料相似性…………………………22 參、掌性金屬錯合物……………………………………………………25 肆、液晶之反射光特性…………………………………………………27 第二章、結果與討論 第一節、背景與研究目標………………………………………………32 第二節、具有向列相液晶屬性片段之氧釩錯合物單體和四聚簇狀體 壹、分子設計……………………………………………………………36 貳、單體錯合物摻雜在向列相液晶分子中之行為探討………………39 參、製備鹼金屬離子鉗合的C4-對稱四聚簇狀體……………………44 肆、C4-對稱四聚簇狀體對鹼金屬離子間的特定增效式篩選傳送…46 伍、正一價(銣、銀)及正二價(鉛、鋇、汞)陽離子之引導性自組裝…48 陸、C4-對稱四聚簇狀體及八聚簇膠囊狀體摻雜在向列相液晶分子中之行為探討………………………………………………………53 柒、相容性測試…………………………………………………………59 第三章、結論與未來展望………………………………………………61 第四章、實驗步驟及光譜數據 第一節、分析儀器………………………………………………………63 第二節、實驗步驟與光譜數據…………………………………………66 參考文獻………………………………………………………………88 附錄 壹、核磁共振光譜圖……………………………………………………S2 貳、偏光顯微鏡下之指紋狀紋理圖與不同溫度下之Cano’s lines 距離變化圖……………………………………………………………S47 參、X-ray 單晶繞射結構解析數據…………………………………S56

    1.Jiang, M.; Shen, T.; Xu, H.-B.; Liu, C.-L. Progress in Chemistry 2002, 14, 263.
    2.Skou, J. C., T.; Biochimica et Biophysica Acta 1957, 23, 394.
    3.BurKhart, B. M.; Gassman, R. M.; Langs, D. A.; Pangborn, W. A.; Duax, W. L.; Pletnev, V. Biopolymers. 1999, 51, 129.
    4.Jani, P.; Enmmert, J.; Wohlgemuth, R. Biotech. J. 2008, 3, 202.
    5.(a) Bourgion, M.; Wong, K. H.; Hui, J. Y.; Smid, J. J. Am. Chem. Soc. 1975, 97, 3462. (b) Vetrichelvan, M.; Lai, Y. H.; Mok, K. F. Dalton Trans. 2003, 295.
    6.(a) Shi, X.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2001, 123, 6738. (b) Wu, G.; Wong, A.; Gan, Z.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 7182. (c) Gill, M. L.; Strobel, S. A.; Loria, J. P. J. Am. Chem. Soc. 2005, 127, 16723. (d) Kotch, F. W.; Sidorov, V.; Lam, Y. F.; Kayser, K. J.; Li, H.; Kaucher, M. S.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 15140.
    7.Lin, Y.-H.; Kuo, T.-S.; Chen, C.-T. J. Am. Chem. Soc. 2008, 130, 12842.
    8.(a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 2000, 39, 1052. (b) Cheng, T.-Y.; Xu,Y.-F.; Zhang, S.-Y.; Zhu, W.-P.; Qian, X.-H.; Duan L. J. Am. Chem. Soc. 2008, 130, 16160. (c) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270. (d) Chen, C.-T.; Hua, W.-P. J. Am. Chem. Soc. 2002, 124, 6246. (e) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831.
    9.(a) Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon R. Science 1998, 280, 69. (b) Gouaux1, E.; MacKinnon R. Science 2005, 310, 1461. (c) Valiyaveetil, F. I.; Leonetti, M.; Muir, T. W.; MacKinnon, R. Science 2006, 314, 1004. (d) 趙文龍; 隋森芳, 科學通報, 2004, 49, 403.
    10.(a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Saibil, H. R. Nature Struc. Biol. 2000, 7, 3.
    11.Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
    12.(a) Bradshaw, J. S.; An, H.; Krakowiak, K. E.; Wang, T.; Zhu, C.; Izatt, R. M. J. Org. Chem. 1992, 57, 6112. (b) An, H.; Bradshaw, J. S.; Krakowiak, K. E.; Tarbet, B. J.; Dalley, N. K.; Kou, X.; Zhu, C.; Izatt, R. M. J. Org. Chem. 1993, 58, 7694.
    13.Tirumala, S.; Davis, J. T. J. Am. Chem. Soc. 1997, 119, 2769.
    14.Pinnavaia, T. J.; Marshall, C. L.; Mettler, C. M.; Fisk, C. L.; Miles, H. T.; Becker, E.D. J. Am. Chem. Soc. 1978, 97, 3625.
    15.Kotch, F. W.; Fettinger, J. C ; Davis, J. T. Org. Lett. 2000, 2, 3277.
    16.Cai, M.; Marlow, A. L.; Fettinger, J. C.; Fabris, D.; Haverlock, T. J.;
    Moyer, B.A.; Davis, J. T. Angew. Chem., Int. Ed. 2000, 39, 1283.
    17.(a) van Leeuwen, F. W. B.; Verboom, W.; Shi, X.; Davis, J. T.;
    Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126, 16575. (b) Davis, J. T.;Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.
    18.Ogata, M.; Fujimoto, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 4505.
    19.Talanova, G. G.; Hwang, H.-S.; Talanov, V. S.; Bartsch, R. A. Chem. Commun. 1998, 418.
    20.Izatt, R. M.; Pawlak, K.; Bradshaw, J. S. Chem. Rev. 1995, 95, 2529.
    21.Sessler, J. L.; Kim, S. K.; Gross, D. E.; Lee, C. H.; Kim, J. S.; Lynch, V. M. J. Am. Chem. Soc. 2008, 130, 13162.
    22.Pathak, R. K.; Dikundwar, A. G.; Row, T. N. G.; Rao, C. P. Chem. Commum. 2010, 46, 4345.
    23.van der Veen, N. J.; Egberink, R. J. M.; Engbersen, J. F. J.; van Veggel, F. J. C. M.; Reinhoudt, D. N. Chem. Commum. 1999, 93, 681.
    24.(a) Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. J. Org. Chem. 2002, 67, 2348. (b) Jiang, P.-Z.; Chung, W.-S. Chemistry (The Chinese Chem. Soc., Taipei) 2004, 62, 13.
    25.Chen, C.-T.; Hua, W.-P. J. Am. Chem. Soc. 2002, 124, 6246.
    26.Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270.
    27.Li, J.; Wu, Y.; Song, F.; Wei, G.; Cheng, Y.; Zhu, C. J. Mater. Chem. 2011, 22, 478.
    28.Nakahara, Y.; Kida, T.; Nakatsuju, Y.; Akashi, M. Chem. Commun. 2004, 224.
    29.Licchelli, M.; Biroli, A. O.; Poggi, A. Org. Lett. 2006, 8, 915.
    30.Basa, P. N.; Bhowmick, A.; Schulz, M.; Sykes, A. G. J. Org. Chem. 2011, 76, 7866
    31.Eggers, L.; Buss, V. Angew. Chem., Int. Ed. 1997, 36, 881-883
    32.Eelkema, R.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 3729.
    33.H. Finkelmann and H. Stegemeyer, Ber. Bunsen-Ges. Phys. Chem. 1978, 82, 1302.
    34.G. P. Semenkova, L. A. Kutulya, N. I. Shkol’nikova and T. V. Khandrimailova, Cryst. Rep. 2001, 46, 118.
    35.P. L. Rinaldi, M. S. R. Naidu andW. E. Conaway, J. Org. Chem. 1982, 47, 3987.
    36.S. Zahn, G. Proni, G. P. Spada and J. W. Canary, Chem. Eur. J. 2001, 7, 88.
    37.Engelmann, M.; Braun, M.; Kuball, H. G. Liquid Crystals 2007, 34, 73.
    38.Mrozek, T.; Görner, H.; Daub,J. Chem. Commun. 1999, 1487-1488.
    39.Eelkema, R.; van Delden, R. A.; Feringa, B. L. Angew. Chem., Int. Ed. 2004, 43, 5013.
    40.Han, Y.; Pacheco, K.; Bastiaansen, C. W. M.; Broer, D. J.; Sijbesma, R. P. J. Am. Chem. Soc. 2010, 132, 2961.
    41.Kado, S.; Takeshima, Y.; Nakahara, Y.; Kimura, K. J. Incl. Phenom. Macro. 2012, 1.
    42.(a) Barhate, N. B.; Chen, C.-T. Org. Lett. 2002, 4, 2529. (b) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Liu, Y.-H.;Barhate, N. B.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869.
    43.Chen, C.-T.; Lin, J.-S.; Kuo, J.-H.; Weng, S.-S.; Cuo, T.-S.; Lin,Y.-W.; Cheng, C.-C.; Huang, Y.-C.; Yu, J.-K.; Chou, P.-T. Org. Lett. 2004, 6, 4471.
    44.(a) Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3522. (b) Pawar, V. D.; Weng, S.-S.; Bettigeri, S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006,128, 6308.
    45.林雅慧 (2011),誘導式自組裝生成C4-對稱釩酸鹽為中心之四聚簇狀體,作為增效式金屬離子之篩選傳送及不對稱催化劑,國立台灣師範大學化學系博士論文。
    46.Solladie´, G.; Zimmermann, R. G. Angew. Chem., Int. Ed. 1984, 23, 3481
    47. Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058.
    48.Heravi, M. M.; Abdolhosseini, N.; Oskooie, H. A. Tetrahedron letters 2005, 46, 8959.
    49.An, P.; Shi, Z. F.; Dou, W.; Cao, X. P.; Zhang, H. L. Org. Lett. 2010, 12(19), 4364.
    50.Raju, B.; Tiwari, A. K.; Kumar, J. A.; Ali, A. Z.; Agawane, S. B.; Saidachary, G.; Madhusudana, K. Bioorg.Med. Chem. Lett. 2010, 18, 358.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE