研究生: |
陳威霖 Chen, Wei-Lin |
---|---|
論文名稱: |
利用電化學沉積法與微米壓印法製作精細矽基太陽能電池導線研究 Fine-line Metallization of Silicon-based Solar Cells by Electrochemical Deposition and Microcontact Printing |
指導教授: |
陳力俊
Chen, Lih-Juann 萬其超 Wan, Chi-Chao |
口試委員: |
陳力俊
Chen, Lih-Juann 萬其超 Wan, Chi-Chao 林景熙 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 壓印 、電化學沉積 |
外文關鍵詞: | Printing, Electrochemical Deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A new process to produce rapidly a two-layer (Ni3P/Cu) structure as front-side conductor of textured mono-crystalline silicon solar cells has been developed. This new technique combines microcontact printing with electrochemical deposition. Microcontact printing is a simple and cost-effective method to create selective emitter patterns on silicon-based solar cells. Electrochemical depositions, including both electroless deposition of amorphous nickel–phosphorus (NiP) and electroplated copper (Cu), offer a low-cost process relative to the conventional silver-paste technology.
The first step is to imprint Pd ink on the front side of solar cells by microcontact printing, which provides an activation layer. The second step is electroless deposition of NiP film. After annealing the NiP film at 400 ˚C in N2 furnace for ten min, Cu layer is deposited to increase line conductivity. A NiSi phase is formed between the NiP film and silicon substrate. The crystallization of amorphous NiP film was confirmed by an increase in Ni3P peaks in XRD spectra.
The contacts formed on Si in the as-deposited NiP films are ohmic with a contact resistivity of about 10−4 Ωcm2. which is better than the conventional silver-paste contacts (10−3 Ωcm2). The width of finger by microcontact printing is less than 40 μm. Furthermore, the substrates being lightly POCl3 doped with a sheet resistance of 80 Ω/□ gain in short-wavelength response and decrease the surface recombination, contact resistance, surface recombination velocity as well as emitter area, thus resulting in improved performance of cells. Microimprinting can increase not only cell efficiency but also module power. Compared with conventional solar cell without antireflection coating, the improvement in solar cell efficiency by more than ~1% can be achieved. The results indicate that this technique has potential applications in solar cell fabrication.
本研究開發出一種新的快速製作出兩層結構(Ni3P/Cu)當作單晶太陽能電池上電極。這種新的技術包含了電化學沉積法和微米壓印法,微米壓印法是一種快速低成本方法而用於在矽基太陽能電池上製作出選擇性的電極。此外電化學沉積法用於了兩部分,其一是無電鍍鎳另一則是電鍍銅,此技術提供一種有別於以往的傳統銀膠的低成本材料製程。
首先,利用微米壓印技術壓印鈀奈米粒子於太陽能電池上半部,目的為利用鈀的催化活性。第二步無電鍍上非晶相的鎳磷層之後在氮爐中以400 ˚C十分鐘退火,最後電鍍銅以增加線傳導性,NiSi相形成在Ni3P與矽基板之間。非晶相的鎳磷層藉由XRD顯示出的Ni3P峰值以確認。
在矽與鎳磷層之間的接觸電阻值約為10−4 Ωcm2 ,此值優於傳統的銀膠(10−3 Ωcm2)。微米壓印的線寬可低於40 μm。此外基板擴散POCl3 摻雜 片阻值為80 Ω/□, 輕摻雜的好處為增加短波長光線的吸收並降低表面的復合。總結此研究降低了接觸電阻,降低了表面復合速率,降低了電極的表面積,導致了電池效率的增長。微米壓印這項技術不僅增進了效率也增進了模組的功率,效率的增進約為1% 結果顯示,該技術具有潛在的應用在太陽能電池製造。
[1] G. L. Pearson, "Conversion of Solar to Electrical Energy," American Journal of Physics, 25, 591-598 (1957).
[2] R. Williams, "Becquerel Photovoltaic Effect in Binary Compounds," The Journal of Chemical Physics, 32, 1505-1514 (1960).
[3] http://www.nrel.gov/solar.
[4] A. Nguyen, A. Fioramonti, D. Morrissey, H. Efstathiadis, Z. Zhouying and P. Haldar, "Feasibility of Improving Front Metallization Lines for Photovoltaic Devices," Proc. 34th IEEE Photovoltaic Energy Conversion, Hawaii (2009).
[5] 林明獻,太陽能電池技術入門(修訂版),二版,全華圖書股份有限公司 (2009)。
[6] S. W. Glunz, A. Mette, M. Alemán, P. L. Richter, A. Filipovic and G. Willeke, "New Concepts for Front Side Metallization of Industrial Silicon Solar Cells," 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden (2006)
[7] A. Y. C. Yu, "Electron Tunneling and Contact Resistance of Metal-silicon Contact Barriers," Solid-State Electronics, 13, 239-247 (1970).
[8] H. H. C. de Moor, A. W. Weeber, J. Hoornstra and W. C. Sinke, "Fine-line Screen Printing for Silicon Solar Cells," in Snowmass Conference, Colorado, USA, 154-170 (1996).
[9] G. Schubert, F. Huster and P. Fath "Physical Understanding of Printed Thick-film Front Contacts of Crystalline Si Solar cells—Review of Existing Models and Recent Developments," 90, 3399-3406 (2005).
[10] G. Grupp, D. Biro, G. Emanuel, R. Preu, F. Schitthelm and G. Willeke, "Analysis of Silver Thick-film Contact Formation on Industrial Silicon Solar Cells," in Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, 1289-1292 (2005).
[11] O. Gzowski, L. Murawski and K. Trzebiatowski, "The Surface Conductivity of Lead Glasses," Journal of Physics, 15, 1097-1101 (1982).
[12] C. Ballif, S. Peters and D. Borchert, "Local Series Resistance Mapping of Silicon Solar Cells by Microwave Photoconductivity Decay Measurements," Progress in Photovoltaics: Research and Applications, 11, 309-317 (2003).
[13] K. Firor, S. J. Hogan, J. M. Barrett and R. T. Coyle, "Series Resistance Associated with Thick-film Contacts to Solar Cells," in Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, California, USA, 824-827 (1982).
[14] G. C. Cheek, R. P. Mertens, R. van Overstraeten and L. Frisson, "Thick Film Metallization for Solar Cell Applications," IEEE Transactions on Electron Devices, ED-31, 602-609 (1984).
[15] C. Ballif, D. M. Huljic, G. Willeke and A. Hessler-Wyser, "Silver Thick Film Contacts on Highly Doped n-type Silicon Emitters: Structural and Electronic Properties of the Interface," Applied Physics Letters, 82, 1878-1880 (2003).
[16] S. Kontermann, G. Emanuel, J. Benick, R. Preu and G. Willeke," Characterisation of Silver Thick-film Contact Formation on Textured Monocrystalline Silicon Solar Cells," in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 613-616 (2006).
[17] E. J. Lee, D. S. Kim and S. H. Lee, "Ni/Cu Metallization for Low-cost High-efficiency PERC Cells," Solar Energy Materials & Solar Cells, 74, 65-70 (2002).
[18] J. A. D. Jensen, P. Møller, T. Bruton, N. Mason, R. Russell, J. Hadley, P. Verhoeven and A. Matthewsone, "Electrochemical Deposition of Buried Contacts in High Efficiency Crystalline Silicon Photovoltaic Cells," Journal of The Electrochemical Society, 150, 49-57 (2003).
[19] C. C. Tseng, "A Novel Method to Produce Pd Nanoparticle Ink for Ink-jet Printing Technology," Colloids and Surfaces A: Physicochemistry Engineers Aspects, 339, 206-210 (2009).
[20] S. H. Lee, "Cost Effective Process for High-efficiency Solar Cell," Solar Energy Material & Solar Cells, 83, 1285-1289 (2009).
[21] C. Boulord, A. Kaminski, B. Canut, S. Cardinal and M. Lemiti, "Electrical and Structural Characterization of Electroless Nickel-phosphorus Contacts for Silicon Solar Sell Metallization," Journal of The Electrochemical Society, 157, 742-745 (2010).
[22] S. P. Murarka, "Silicides for VLSI Applications," Academic Press, New York (1983).
[23] K. Maex and M.Van Rossum, "Properties of Metal Silicides," INSPEC, The Institution of Electrical Engineers: London (1995).
[24] Y. S. Chang, I. J. Hsieh and J. Y. Lee, "Growth, Structure and Electrical Characteristics of Epitaxial Nickel Silicide from Chemically Electroless Ni Deposition on Si," Journal of Material Science, 25, 2637-2641 (1990).
[25] C. M. Liu, W. L. Liu, S. H. Hesieh, T. K. Tasi and W. J. Chen, "Interfacial Reactions of Electroless Nickel Thin Films on Silicon," Applied Surface Science, 243, 259-262 (2005).
[26] A. Duhin, Y.Sverdlov, I. Torchinsky, Y. Feldman and Y. Shacham-Diamand," NiSi Contact Metallization Using Electroless Ni Deposition on Pd-activated Self-assembled Monolayer (SAM) on p-type Si(100)," Microelectronic Engineering, 84, 2506-2514 (2007).
[27] L. J. Guo, "Recent Progess in Nanoimprint Technology and Its Applications," Journal of Physics D: Applied Physics, 37, 123-141 (2004).
[28] 林志賢,碩士論文,清華大學,中華民國台灣 (2010)。
[29] 林哲宇,碩士論文,清華大學,中華民國台灣 (2008)。
[30] H. Jiang, C. M. Osburn, Z. G. Xiao, G. Mcguire and G. A. Rozgonyi, "Ultra Shallow Junction Formation Using Diffusion for Silicides-part Ⅱ Diffusion in Silicides and Evaporation," Journal of Electrochemistry Society, 44, 206-211 (1992).
[31] C. Canali, G.Majini, G. Ottaviani and G. Celotti, "Phase Diagrams and Metal-rich Silicide Formation," Journal of Applied Physics, 50, 225-258 (1979).
[32] M. Aleman, N. Bay, D. Barucha, S. W. Glunz and R. Preu, "Front-side Metallization of Silicon Solar Cells by Nickel Plating and Light Induced Silver Plating," Galvanotechnik, Photovoltaik, 412-417 (2009).
[33] Y. T. Gizachew, L. Escoubas, J. J. Simon, M. Pasquinelli, J. Loiret, P. Y. Leguen, J. C. Jimeno, J. Martin, A. Apraiz and J. P. Aguerre, "Towards Ink-jet Printed Fine Line Front Side Metallization of Crystalline Silicon Solar Cell," Solar Energy Materials &Solar Cells, 95, 70-82 (2011).
[34] G. K. Reeves and H. B. Harrison, "Obtaining The Specific Contact Resistance from Transmission Line model Measurements," IEEE Electron Device Letters, EDL-3, 111-113 (1982).
[35] D. K. Schroder and D. L. Meier, "Solar Cell Contact Resistance-a Review," IEEE Transactions on Electron Devices, ED31 637-641 (1984).
[36] G. Ottaviani, "Review of Binary Alloy Formation by Thin Film Interactions," Journal of Vacuum Science and Technology, 16, 1112-1119 (1979).
[37] B. K. Singh and R. N. Mitra, "Variation of Contact Resistance of Electroless Ni-P on Silicon with the Change of Phosphorous Concentration in the Deposition," Journal of Electrochemistry Society, 127, 2578-2580 (1980).
[38] M. V. Sullivan and J. H. Eigler, "Electroless Nickel Plating for Making Ohmic Contacts to Silicon," Journal of Electrochemistry Society, 104, 226-230 (1957).
[39] D. Y. Shin, "Fabrication of an Inkjet-printed Seed Pattern with Silver Nanoparticulate Ink on a Textured Silicon Solar Cell Wafer," Journal of Micromechanics and Microengineering, 20, 125003 (2010).
[40] 張俊彥主編,積體電路製成及設備技術手冊,經濟部技術處,民86。
[41] http://en.wikipedia.org/wiki/Copper. (維基百科)
[42] Industrial Technology Research Institute (ITRI) Green Energy & Environment Research Labs (GEL) 新竹竹東工研院綠能所,研究員吳德清博士提供。