簡易檢索 / 詳目顯示

研究生: 黃昱軒
Hwang, Yuh-Shiuan
論文名稱: 鋰離子電池芯等效電路模型及參數建構研究
Study on Equivalent Circuit Model and Parameter Extraction for Lithium-Ion Cells
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 陳國慶
Chen, Kuo-Ching
陳翰儀
Chen, Han-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 鋰離子電池等效電路模型電池參數辨識
外文關鍵詞: Li-Ion Battery, Equivalent Circuit Model, Battery Parameter Identification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於石化能源枯竭及溫室效應議題日益嚴重,綠色能源勢必要取代傳
    統石化燃料。在日常生活使用之大眾運輸車輛,受限於內燃機引擎能源轉換 效率,無法降低排放之溫室氣體,將規劃逐年減產。而以高能密鋰離子電池 為儲能設備核心之電動車,因符合環保節能需求,且大幅提升能源使用效 率,促成電動車產業技術快速發展,成為今日的新興綠能產業。電動車為準 確預測行車可用里程,必須依靠電池模型預測剩餘電量,更需搭配線上檢測 功能評估電池老化、環境溫度及充放電瞬時峰值等狀態的變化,再以優化控 制技術,克服電池系統意外故障之隱憂。
    本論文採用半經驗推導之等效電路為電池模型,藉由商業軟體 MATLAB/SimulinkR進行參數建模分析,以開路電壓源、內部串聯電阻及 3 組電阻/電容並聯網絡之電路元件作為模型基本架構,配合動態脈衝放電實 驗數據進行模型參數擬合,過程以非線性最小平方法進行參數優化。在實務 應用端,使用參數找查表模型紀錄各電池芯之荷電狀態及參數變化,以預測 電池芯之完整放電行為,最後達成模型動及靜態預測均方根誤差分別為 3.48 mV(0.096%)及 41.78 mV(1.151%),經評估為可實際應用之成果,期望 本論文研究成果能提供電動車產業電池系統建模之重要參考根據。


    Due to the depletion of fossil energy and the concerns on global warming, green energy is bound to replace traditional fossil fuels. Production of public transportation vehicles used in daily life are constrained by fuel efficiency of ICE has been yearly scheduled in less volume due to the inability in reduction of greenhouse gas emissions. Electric Vehicles relying energy storage with high energy-density Li-ion batteries can fulfill the requirements of environmental protection and energy conservation together with highly improvement in energy efficiency; hence, lead to the rapid technology development in the electric vehicle industry and bloom into highlight of green energy industry. To accurately predict the available mileage of EVs, battery models are essential for the prediction of remaining capacity. Moreover, they are prominent in forecasting on-line the battery cell aging, ambient temperature and charging/discharging power peaks so that unexpected failures of battery system are prevented via optimal control techniques.
    In this thesis, a semi-empirical equivalent circuit is employed for the battery model, with the commercial software MATLAB/SimulinkR being adopted for the parametric modeling. An open-circuit voltage source, internal series resistance, and three paralleled RC networks are chosen for the model structure. For practical application, a parametric look-up table model is generated for prediction of the overall discharging behavior of battery cells via matching the state of charge and parameter variations of each individual battery cell. Finally, both dynamic and static RMSE in predictions are 3.48 mV (0.096%) and 41.78 mV (1.151%), respectively. As a result, this investigation will contribute to source of references for researches in battery modeling in the electric vehicle industry.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號文字對照表 X 第一章 序論 1 1-1 研究背景 1 1-2 研究動機與目的 3 1-3 文獻回顧 3 1-3-1 等效電路模型 4 1-3-2 非線性系統參數識別 6 第二章 基礎電池理論介紹 11 2-1 鋰離子電池工作原理 11 2-1-1 電池的組成 11 2-1-2 電池電化學反應 13 2-2 交流電化學原理 14 2-2-1 電化學阻抗頻譜理論 14 2-2-2 電化學阻抗頻譜量測原理 16 2-2-3 電化學阻抗頻譜使用條件 19 2-2-4 電化學阻抗頻譜等效元件及其物理意義 20 第三章 鋰離子電池芯性能實驗 30 3-1 前言 30 3-2 待側電池芯及實驗平台 30 3-3 靜態容量實驗 31 3-4 動態脈衝實驗 34 3-5 電化學阻抗頻譜量測實驗 36 第四章 等效電路模型及參數識別 46 4-1 電池模型設計與分析 46 4-1-1 電池模型概述 46 4-1-2 等效電路與參數推導 47 4-1-3 等效電路模型設計 52 4-2 參數識別及方法 57 4-2-1 參數識別工具 58 4-2-2 非線性最小平方法 59 第五章 數據驗證及預測分析 66 5-1 實驗數據分析 66 5-1-1 靜態容量實驗之數據分析 66 5-1-2 動態脈衝實驗之數據分析 68 5-1-3 電化學阻抗頻譜量測實驗之數據分析 68 5-2 模型參數擬合及預測 70 5-2-1 參數初始值 70 5-2-2 模型參數擬合 72 5-2-3 找查表電池芯模型預測 75 第六章 結論與未來工作 96 6-1 結論 96 6-2 未來工作 98 參考文獻 100

    [1] Farmann, A., and Sauer, D. U., “A comprehensive review of on-board State-of- Available-Power prediction techniques for lithium-ion batteries in electric vehicles”, Journal of Power Sources, 329, 123-137, 2016.

    [2] Ungurean, L., Cârstoiu, G., Micea, M. V., and Groza, V., “Battery state of health estimation: a structured review of models, methods and commercial devices”, International Journal of Energy Research, 41(2), 151-181, 2017.

    [3] Meng, J., Luo, G., Ricco, M., Swierczynski, M., Stroe, D. I., and Teodorescu, R., “Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles”, Applied Sciences, 8(5), 659, 2018.

    [4] Vincent, C., and Scrosati, B., Modern Batteries, Elsevier Science, 2nd Edition, ISBN:9780080536699, 1997.

    [5] Pistoia, G., Batteries for Portable Devices, Elsevier Science, 1st Edition, ISBN:9780080455563, 2005.

    [6] Chen, M., & Rincon-Mora, G. A., “Accurate electrical battery model capable of predicting runtime and IV performance”, IEEE Transactions on Energy Conversion, 21(2), 504-511, 2006.

    [7] Erdinc, O., Vural, B., and Uzunoglu, M., “A dynamic lithium-ion battery model considering the effects of temperature and capacity fading”, International Conference on Clean Electrical Power, 383-386, 2009.

    [8] Zou, C., Manzie, C., and Nešić, D., “A framework for simplification of PDE-based lithium-ion battery models”, IEEE Transactions on Control Systems Technology, 24(5), 1594-1609, 2016.

    [9] Shen, P., Ouyang, M., Lu, L., Li, J., and Feng, X., “The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles”, IEEE Transactions on Vehicular Technology, 67(1), 92-103, 2017.

    [10] 嚴利民、陳佳雯,“鋰電池等校模型的研究與設計”,電動工具(03),1-4+8,2020。

    [11] Hu, X., Li, S., & Peng, H., “A comparative study of equivalent circuit models for Li-ion batteries.”, Journal of Power Sources, 198, 359-367, 2012.

    [12] Nejad, S., Gladwin, D. T., and Stone, D. A., “A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states”, Journal of Power Sources, 316, 183-196, 2016.

    [13] Huria, T., Ceraolo, M., Gazzarri, J., and Jackey, R., “High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells”, IEEE International Electric Vehicle Conference, 1-8, 2012.

    [14] Jackey, R., Saginaw, M., Sanghvi, P., Gazzarri, J., Huria, T., and Ceraolo, M., “Battery model parameter estimation using a layered technique: an example using a lithium iron phosphate cell”, SAE Technical Paper, 2, 1-14, 2013.

    [15] Jiang, S., “A parameter identification method for a battery equivalent circuit model”, SAE Technical Paper, No. 2011-01-1367, 2011.

    [16] 謝旺,“基於 Thevenin 等效電路模型的鋰離子電池組 SOC 估算研究”,上海交通
    大學碩士學位論文,2013。

    [17] Yao, L. W., Aziz, J. A., Kong, P. Y., and Idris, N. R. N., “Modeling of lithium-ion battery using MATLAB/simulink”, IECON 2013-39th Annual Conference of the IEEE Industrial Electronic Society, 1729-1734, 2013.

    [18] Liao, C., Li, H., and Wang, L., “A dynamic equivalent circuit model of LiFePO 4 cathode material for lithium ion batteries on hybrid electric vehicles”, IEEE Vehicle Power and Propulsion Conference, 1662-1665, 2009.

    [19] 張惠玲,“基於等效電路模型的鋰離子電池組 SOC 估算研究”,西南科技大學碩士
    學位論文,2016。

    [20] Thirugnanam, K., TP, E. R. J., Singh, M., and Kumar, P., “Mathematical modeling of Li- ion battery using genetic algorithm approach for V2G applications”, IEEE Transactions on Energy Conversion, 29(2), 332-343, 2012.

    [21] Forman, J. C., Moura, S. J., Stein, J. L., and Fathy, H. K., “Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell”, Journal of Power Sources, 210, 263-275, 2012.

    [22] 陳忠霞,“鋰離子電池等效模型參數辨識研究”,山東科技大學碩士學位論文,2017。

    [23] KEEPPOWERTM, LG INR21700 M50T High Capacity 3.6V Rechargeable Lithium-ion Battery. Retrieved from:https://www.keeppower.com.cn/products_detail.php?id=577.

    [24]壹讀,從技術角度看圓柱型鋰電池 21700。檢自:
    https://read01.com/kEMzyA4.html#.YTYTkBfis61,4 月 4 日,2018。

    [25] Sebastian, M., “The influence of diphenyl octyl phosphate on the electrode interfaces of lithium-ion batteries”, Project Thesis in Elektrochemie und Galvanotechnik, Technische Universität Ilmenau, Germany, 2016.

    [26] Goodenough, J. B., “How we made the Li-ion rechargeable battery”, Nat Electron, 1, 204, 2018.

    [27] Orazem, M. E., and Tribollet, B., Electrochemical Impedance Spectroscopy, John Wiley & Sons Inc., 2nd Edition, ISBN:9781118527399, 2017.

    [28] Barsoukov, E., and Macdonald, J. R., Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons Inc., 2nd Edition, ISBN :9781119381860, 2018.

    QR CODE