簡易檢索 / 詳目顯示

研究生: 蔡佳育
Tsai, Chia-Yu
論文名稱: QC-LDPC Code Construction by Proto-Matrix Extension Based on Depth Tree
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 翁詠祿
林靖茹
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 27
中文關鍵詞: 準循環低密度奇偶檢查碼低密度奇偶檢查碼
外文關鍵詞: QC-LDPC code, LDPC code
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度奇偶檢查碼(LDPC code)在1962年被Gallager提出,其錯誤校正能力非常接近理論最大值(Shannon Limit),其中準循環低密度奇偶檢查碼(quasi-cyclic LDPC code)為具有碼字半循環特性的更正碼,此特性提供了編碼及解碼上複雜度降低的優勢。
    本論文提出一種基於矩陣擴展的準循環低密度奇偶檢查碼建構演算法,這套演算法是建立於PEG(progress edge growth)演算法循序建構 Tanner 圖中連線的設計方式。
    我們透過PEG演算法建立出小尺寸的基矩陣,再藉由深度樹(depth tree)的延伸找出最適合的矩陣擴展參數。程式模擬結果顯示我們的演算法在相同的設計變數下能達到不錯的更正能力。


    The error-correcting code (ECC) is one of the channel coding technique widely used in many applications.
    Low density parity check (LDPC) codes have a remarkable performance Among the error-correcting codes, and have drawn significant attention for their error-correcting capability using the message-passing decoding algorithm.
    The PEG algorithm is a good sub-optimal method to construct the Tanner graph for a LDPC code. By progressively establishing edges between the furthest nodes, the PEG algorithm is able to build a Tanner graph while maximizing length of the cycle caused in the edge adding progress.
    In this thesis, we introduces a greedy algorithm for quasi-cyclic (QC) LDPC code construction, which works in the same manner as the PEG algorithm. QC-LDPC codes are a subclass of LDPC codes which gains benefits on encoding/decodng complexity reduction from their circular shifting structures.
    In the proposed algorithm, a QC-LDPC code is built by extending a small size matrix to the target size with large cycles. Our algorithm focuses on cycle length stretching during the matrix extension.
    The matrix extension is implemented by fitting proper circulant matrix while eliminating short cycles. We present a new kind of depth tree for circulant search in matrix extension procedure.
    Our algorithm brings out the QC-LDPC code with reconfigurable code parameter settings and has good performance close to PEG LDPC codes. Furthermore, the use of matrix extension reduces the computation scale, and provides a efficient and easy-to-implement method to construct a QC-LDPC code.

    Abstract i Contents ii 1 Introduction 1 2 System Description 3 2.1 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 QC-LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Encoding LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Code Construction Algorithms 11 3.1 Progressive Edge-Growth Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 QC-LDPC Progressive Edge-Growth Algorithm . . . . . . . . . . . . . . . . 14 3.3 Proposed QC-LDPC Extension Algorithm Based on Depth Tree . . . . . . . 16 4 Simulations 21 4.1 simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conclusion 25

    [1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information The-
    ory, vol. 8, pp. 21–28, January 1962.
    [2] R. Townsend and E. Weldon, “Self-orthogonal quasi-cyclic codes,” IEEE Transactions
    on Information Theory, vol. 13, pp. 183–195, April 1967.
    [3] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite
    geometries: a rediscovery and new results,” IEEE Transactions on Information Theory,
    vol. 47, pp. 2711–2736, Nov 2001.
    [4] M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation
    matrices,” IEEE Transactions on Information Theory, vol. 50, pp. 1788–1793, Aug 2004.
    [5] R. Sobhani, “Approach to the construction of regular low-density parity-check codes
    from group permutation matrices,” IET Communications, vol. 6, pp. 1750–1756, August
    2012.
    [6] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth
    tanner graphs,” IEEE Transactions on Information Theory, vol. 51, pp. 386–398, Jan
    2005.
    [7] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,”
    IEEE Transactions on Information Theory, vol. 47, pp. 638–656, Feb 2001.
    26[8] Z. Li and B. Kumar, “A class of good quasi-cyclic low-density parity check codes based
    on progressive edge growth graph,” vol. 2, pp. 1990–1994 Vol.2, Nov 2004.
    [9] P. Prompakdee, W. Phakphisut, and P. Supnithi, “Quasi cyclic-ldpc codes based on peg
    algorithm with maximized girth property,” pp. 1–4, Dec 2011.
    [10] M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation
    matrices,” IEEE Transactions on Information Theory, vol. 50, pp. 1788–1793, Aug 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE