簡易檢索 / 詳目顯示

研究生: 黃泓憲
Huang, Hung Hsien
論文名稱: 非均質摻雜碲化銻鉍化合物之熱電特性與模擬分析
Thermoelectric characterization and modeling of asymmetrically doped bismuth antimony telluride compounds
指導教授: 廖建能
Liao, Chien Neng
口試委員: 吳子嘉
黃菁儀
朱旭山
蔡哲正
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 98
中文關鍵詞: 水平式熱電效應碲化鉍摻雜
外文關鍵詞: Transverse thermoelectric effect, Bismuth telluride, Doping
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料因其能夠直接互相轉換熱能與電能的特性,而被廣泛使用於致冷與發電固態元件。碲化鉍系列化合物在室溫區段下擁有極佳的熱電轉換效率,於低溫廢熱回收之相關應用範疇具有發展潛力。本研究透過梯度擴散銀摻雜製程製備出一包含不同西貝克係數(Seebeck coefficient)及傳導性質的碲化銻鉍化合物接合在一起的熱電材料。我們發現此結構擁有特殊的水平式西貝克效應(transverse Seebeck effect)。此類水平式熱電效應一般常見於具有高度非均向性(anisotropic)傳輸性質的材料。本研究利用FlexPDE模擬軟體分析該接面結構因熱電效應所造成的渦電流(eddy current),並依此電流定義最佳電壓輸出時的尺寸比例,該最佳高寬比約為1 : 2.6,而由模擬結果發現,此一比率正比於兩區域材料的西貝克係數差異。此外,在性質提升方面,我們利用一電位重導層結構(potential redistributor)強制提升摻雜接面材料的單面電壓輸出。在實際量測結果中,此類型的水平式熱電效應原型模組之水平西貝克效應表現值(transverse Seebeck performance)可達約~216 μV/K,等效熱電優值(ZT)約為0.091。而經模擬後發現,該Seebeck係數之來源與模組表面電極所造成之二維溫度分佈有關。由於二維溫度分佈引入水平與垂直兩種溫差方向電壓,使電壓輸出效果提升。我們並利用模擬方式計算此類型模組在85℃溫差下的功率密度(Power density),發現在材料高寬比為1 : 2.6,而材料高度與電極長度比為1 : 1.74時,有一最佳化的功率密度達1150 W/m2,熱電優值則為0.13。最後,我們則是探討非均勻摻雜碲化銻鉍化合物的電傳導特性。當在材料兩端施以一由負到正的掃描電壓時,可觀測到一不對稱的I-V特性曲線。而進行掃描式Seebeck量測時,所量測到的熱電壓很容易受到量測環境熱絕緣條件的影響。本研究亦利用數值模擬的方式來探討掃描量測過程中所發現的特殊熱電現象。


    The transverse thermoelectric effect is generally found in a material system with anisotropic electrical/thermal properties. Herein, we reported a simple way of forming thermoelectric anisotropy in a single piece of Bi-Sb-Te compound by partially doping of Ag elements. A transverse Seebeck effect is experimentally observed on the asymmetrically doped Bi-Sb-Te pellet. We show that the optimized aspect ratio of the pellet (length/thickness = 2.6) for maximum transverse Seebeck performance is associated with the distribution of eddy thermoelectric current in the pellet according to the FlexPDE simulation results, and the simulated results indicated that the optimized aspect ratio is proportional to the difference of Seebeck coefficient at the two regions. Besides, a potential redistributor was applied on the non-uniform Bi-Sb-Te pellet to enhance the transverse Seebeck voltage, which raises the effective Seebeck coefficient from 105 to 216 μV/K at the cold side. A two-dimensional distribution of electrical potential and temperatures in the pellet is modeled numerically. The size dependence of thermoelectric power and electrical resistance for the asymmetrically doped Bi-Sb-Te compounds is also investigated. The transverse modules made of the pellets with a dimension of length : thickness : electrode length = 2.6 : 1: 1.74 shows a maximum power density of 1150 W/m2 at a temperature difference of △T = 85℃. Finally, the electrical transport behavior of the non-uniform Bi-Sb-Te compounds is investigated, which shows an asymmetrical I-V characteristics when applying a current sweep through the gradient doped Bi-Sb-Te compound. The thermally induced voltage in the longitudinal direction of the gradient doped pellet is strongly dependent on the thermal isolation condition during the scanning Seebeck measurement. A numerical simulation analysis has been conducted to explain the abnormal Seebeck measurement results.

    摘要 I ABSTRACT II SELECTED LIST OF SYMBOLS III LIST OF FIGURES IX LIST OF TABLES XV CHAPTER 1. INTRODUCTION 1 1-1 Preface 1 1-2 Thermoelectric effects and thermoelectric devices 1 1-3 Thermoelectric transport theory 7 1-4 Development of thermoelectric material and module 12 1-5 Research motive and scope 15 CHAPTER 2. LITERATURE REVIEW 17 2-1 Bismuth-telluride based compounds 17 2-1-1 Bi2Te3 crystal structure 17 2-1-2 Transport properties of Bi2Te3 18 2-1-3 Diffusion property of Bi2Te3 single crystal 19 2-2 Electronic defect in Bi2Te3-based compounds 20 2-2-1 P-type Bi2Te3-Sb2Te3 21 2-2-2 N-type Bi2Te3-Bi2Se3 21 2-3 Theory of transverse thermoelectric effect 22 2-3-1 Transverse Seebeck and Peltier effect 22 2-3-2 Theory of synthetic transverse thermoelements 24 2-3-3 Applications of transverse thermoelectric effects 27 2-3-4 Eddy thermoelectric current of the transverse thermoelectric effect in two-layers structure 30 CHAPTER 3. EXPERIMENTAL DESIGN 36 3-1 Sample preparation 36 3-1-1 Bi-Sb-Te ingot and powder preparation 36 3-1-2 Non-uniform doping treatment 37 3-2 Thermoelectric characterization 37 3-2-1 Scanning probe Seebeck coefficient measurement 37 3-2-2 Transverse Seebeck performance measurement 39 3-2-3 Hall measurement 40 3-3 Thermal conductivity 42 CHAPTER 4. RESULTS AND DISCUSSION 45 4-1 Basic properties of p-type Bi–Sb–Te compounds 45 4-1-1 Gradient doping profile of silver in Bi–Sb–Te compounds 45 4-1-2 Comparison of doped and non-doped Bi-Sb-Te compounds 46 4-2 Transverse Seebeck effect of two-layered structures 48 4-2-1 Simulation model of asymmetric doped Bi-Sb-Te compounds 48 4-2-2 Transverse Seebeck voltage measurement and simulation results 49 4-2-3 Temperature and potential simulation of an asymmetric doped Bi-Sb-Te pellet 51 4-2-4 Dimension effect of transverse Seebeck performance 53 4-3 Eddy current simulation for gradient-doped pellets 56 4-3-1 Eddy current–transverse Seebeck voltage relation 56 4-3-2 Critical length analysis with eddy current density distribution 59 4-3-3 Effect of transport properties anisotropy on the critical aspect ratio 64 4-4 Transverse Seebeck performance with potential redistributor 66 4-4-1 Potential rearrangement of gradient-doped pellets 66 4-4-2 Thermoelectric module made of gradient doped pellets 67 4-5 Simulations of transverse thermoelectric modules 73 4-5-1 Transverse Seebeck voltage under a two-dimensional temperature distribution 73 4-5-2 Electrical resistance of transverse thermoelectric modules 78 4-5-3 Power density and optimized dimensions for transverse thermoelectric modules 81 4-5-4 Electrode size optimization for transverse thermoelectric modules 82 4-5-5 Effect of Seebeck anisotropy on the power density and ZT of transverse thermoelectric modules 84 4-6 Transport properties of gradient doped Bi-Sb-Te pellets 85 4-6-1 Basic properties 85 4-6-2 Scanning Seebeck measurement results 85 4-6-3 Simulations for synergistic Seebeck effect of gradient doped pellets 86 4-6-4 I-V characteristics of gradient doped pellets 89 CHAPTER 5. CONCLUSIONS AND PROSPECTS 92 5-1 Conclusion 92 5-2 Prospects 93 References 95

    [1] T.J. Seebeck, Abh. K. Akad. Wiss. (Berlin, 1823).
    [2] P. M. Peltier, Annales de Chimie et de Physique, 56 (1834)
    [3] L. E. Bell, Sciece, 321 (2008).
    [4] D. M. Rowe, CRC Handbooks of Thermoelectrics, (CRC Press, Boca Raton, FL, 1995).
    [5] S. Kumar, S. D. Heister, X. F. Xu, J. R. Salvador, G. P. Meisner, Journal of electronic materials, 42 (2013).
    [6] X. Liu, Y.D. Deng, S. Chen, W.S. Wang, Y. Xu, C.Q. Su, Case Studies in Thermal Engineering, 2 (2014).
    [7] J. Martins, L.M. Goncalves, J. Antunes, F. P. Brito, SAE Technical Papers (2011).
    [8] M. T. De Leon, H. Chong, M. Kraft, Procedia Engineering, 47 (2012).
    [9] C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, Materials, 3 (2010).
    [10] F. J. DiSalvo, Science 285, 703 (1999)
    [11] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci., 2 (2009)
    [12] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Springer, Berlin, 2001).
    [13] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley 2005.
    [14] G.J. Snyder, E.S. Toberer, Nat. Mater., 7 (2008).
    [15] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater., 19 (2007)
    [16] B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science, 320 (2008)
    [17] L.D. Hicks, M.S. Dresselhaus, Physical Review B, 47 (1993)
    [18] R. Ranjan, J. E. Turney, C. E. Lents, V. H. Faustino, J. Electron Packaging, 136 (2014)
    [19] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem., Int. Ed. 48 (2009).
    [20] H. Lengfellner, G. Kremb, A. Schnellbbgl, J. Betz, K. F. Renk, and W. Prettl, Appl. Phys. Lett. 60, 501 (1992).
    [21] W. M. Huber, S. T. Li, A. Ritzer, D. B€auerle, H. Lengfellner, and W. Prettl, Appl. Phys. A 64, 487 (1997).
    [22] D. M. Rowe, Materials, Preparation, and Characterization in Thermoelectrics (CRC Press, Boca Raton, 2012).
    [23] K. Takahashi, T. Kanno, A. Sakai, H. Adachi, and Y. Yamada, Appl. Phys. Lett. 97, 021906 (2010).
    [24] Z. H. He, Z. G. Ma, Q. Y. Li, Y. Y. Luo, J. X. Zhang, R. L. Meng, and C. W. Chu, Appl. Phys. Lett. 69, 3587 (1996).
    [25] H. J. Goldsmid, J. Electron. Mater. 40 (2011).
    [26] A. Kyarad and H. Lengfellner, Appl. Phys. Lett. 85 (2004).
    [27] G. Wang, T. Cagin, Physical Review B 76 (2007).
    [28] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 53 (1992)
    [29] D. M. Rowe, Thermoelectric Handbook: Macro to Nano, (CRC/Taylor & Francis, 2006)
    [30] R. O. Carlson, J. Phys. Chem, Solids 13 (1960).
    [31] J. D. Keys, H. M. Dutton, J. Phys. Chem, Solids, 24 (1963).
    [32] G.R. Miller, C.Y. Li, J. Phys. Chem. Solids 26 (1965).
    [33] W. M. Yim and F. D. Rosi, Sol. St. Elec. 15 (1972).
    [34] J. Horak, K. Cermak and L. Koudelka, J. Phys. Chem. Solids 47 (1986).
    [35] J. Horak, Z. Stary, J. Votinsky, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 69 (1994).
    [36] D. Perrin, M. Chitroub, S. Scherrer, H. Scherrer, J. Phys. Chem. Solids 61 (2000).
    [37] J. Jiang, L.D. Chen, Q. Yao, S.Q. Bai, Q. Wang, Mater. Chem. Phys. 92 (2005).
    [38] S.K. Lee, T.S. Oh, D.B. Hyun, C.W. Hwang, Met. Mater.-Korea 6 (2000).
    [39] P.P. Shvangiradze, E.P. Sabo, Inorg. Mater. 36 (2000).
    [40] H. Lengfellner, S.Zeuner, W. Prettl, K. F. Renk, Europhys. Lett. 25 (1994).
    [41] H. Lengfellner, G. Kremb, A. Schnellbogl, J. Betz, K. F. Renk, W. Prettl, Appl. Phys. Lett. 60 (1992).
    [42] H. J. Goldsmid, J. Electron. Mater. 40 (2011).
    [43] T. Zahner, R. Forg, H. Lengfellner, Appl. Phys. Lett. 73 (1998).
    [44] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1956).
    [45] R. T. Delves, A. E. Bowley, D. W. Hazelden, H. J. Goldsmid, Proc. Phys. Soc., 78 (1961).
    [46] V. P. Babin, T. S. Gudkin, Z. M. Dashevskii, L. D. Dudkin,E. K. Iordanishvili, V. I. Kaidanov, N. V. Kolomoets, O. M.Narva, and L. S. Stil’bans, Sov. Phys.-Semicond, 8(1974).
    [47] Rebekah A. D., Master of Science In Mechanical Engineering thesis, Blacksburg, Virginia (2007)
    [48] Tsutomu K. Satoshi Y., Akihiro S., Kouhei T.,Hideaki A., Appl. Phys. Lett. 94 (2009).
    [49] K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, Y.Yamada, Sci. Rep. 3 (2013).
    [50] A. Saikai, T. Kanno, K. Takahashi, H. Tamaki, H. Kusada, Y. Yamada, H. Abe, Sci. Rep. 4 (2014).
    [51] L.1. Anatychuk, O.J. Luste, 16th International Conference on Thermoelectrics, Dresden, Germany (1997).
    [52] L.l.Anatychuk, O.J.Luste, V.R.Karaushu, 22nd International Conference on Thermoelectrics, La Grande Motte, France (2003).
    [53] L.I. Anatychuk, R.V. Kuz’, O.J. Luste, Journal of Thermoelectricity 3 (2005).
    [54] L.I. Anatychuk, European Conference on Thermoelectrics 2007, Odessa, Ukrine (2007).
    [55] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys., 32 (1961)
    [56] J. Navrátil, I. Klichová, S. Karamazov, J. Šrámková and J. Horák, J. Solid State Chem., 29 (1998).
    [57] P. Lošt’ák, Cˇ. Drašar, J. Horák, Z. Zhou, J.S. Dyck, C. Uher, J. Phys. Chem. Solids, 67(2006).
    [58] J Paulinit, G Simon, I Decker, Phys. D: Appl. Phys. 23 (1990).
    [59] L.I.Anatychuk, V.R. Karaushu, O.J. Luste, Journal of Thermoelectricity, 2 (2003).
    [60] L.I. Anatychuk, V.R. Karaushu, O. J. Luste, Journal of Thermoelectricity, 3 (2003).
    [61] L.I.Anatychuk, O.J. Luste, R.V. Kuz, M.N. Strutinsky, Journal of Electro. Mater. 40, (2011).
    [62] J. D. Alamo, Sol. St. Elec., 24 (1981)
    [63] J. D. Alamo, J. Eguren, A. Luque, Sol. St. Elec., 24 (1981).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE