簡易檢索 / 詳目顯示

研究生: 王惠珺
Hui-Jun Wang
論文名稱: 二氧化碳光聲光譜之研究
Photoacoustic spectroscopy of CO2 gas
指導教授: 施宙聰
Jow-Tsong Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 42
中文關鍵詞: 光聲光譜二氧化碳
外文關鍵詞: photoacoustic, spectroscopy, PAS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用一波長為1570 nm的分佈反饋二極體雷射 (DFB diode laser),探討二氧化碳氣體的光聲光譜。將雷射光射入至充滿二氧化碳的光聲氣室中,經由光聲效應的作用,將氣體吸收光的變化以聲波的形式呈現,使用電容式麥克風當作壓力換能器,將光聲訊號讀取出來。分別用nondifferential mode 及differential mode 的光聲系統來測二氧化碳在1.57 處附近的吸收譜線R(34),兩種系統所量測到的靈敏度都約為 ,其中differential mode所量測到的靈敏度,在不同氣室壓力下都比nondifferential mode所量測的靈敏度的好一些,其原因是因為differential PA cell中額外的麥克風可減少同調的雜訊以及環境的背景雜訊。
    此外我們也計畫利用共振腔增強方式(cavity enhancement),提高共振腔內的光強度,進而增強光聲訊號及系統的靈敏度。由於許多技術性問題,目前我們僅能使共振腔之共振頻率在雷射輸出頻率上振盪,尚無法取得光聲光譜訊號。


    In this thesis, we study the photoacoustic spectroscopy of CO2 molecule using a 1570 nm DFB diode laser. The output of a 6-mW DFB diode laser is sent into a photoacoustic cell which is filled with carbon dioxide. Because of the photoacoustic effect, the variation of absorption generates an acoustic wave. We use a microphone as a transducer to detect the photoacoustic signal. An additional photoacoustic system was used to remove the background noise. The sensitivity of the system is , which is comparable with other experiments.
    In order to improve the sensitivity of the photoacoustic system, a Fabry-Perot cavity was placed outside the photoacoustic cell to enhance the light intensity. Until now, we are not able to lock the Fabry-Perot cavity on the laser frequency very well due to some technical problems, e.g., the mechanical instability of the cavity. Further improvements are needed to detect the cavity-enhanced photoacoustic signal in the feature.

    第一章 序論 1.1 實驗動機 1.2 光聲光譜學的簡介 1.3 光聲光譜學的優越性 第二章 光聲光譜學 2.1 光聲光譜學 2.1-1 氣體的光聲效應 2.1-2 聲學共鳴器 2.1-3 共振腔共鳴器內的光聲訊號 2.1-4 光聲訊號 2.1-5 雜訊 2.1-6 結構上所造成的損失 2.1-7 光聲系統的要求 2.2 共振腔共振理論 第三章 實驗結果與分析 3.1 實驗架構 3.1-1 光路部份 3.1-2 控制部份 3.2 實驗儀器 3.2-1 分佈回饋式二極體雷射 3.2-2 麥克風 3.2-3 光聲氣室 3.3 實驗結果 3.3-1 Nondifferential mode 光聲訊號 3.3-2 Differential mode 光聲訊號 3.3-3 共振腔增強光聲系統 第四章 總結與改進 參考文獻

    [1] A.G. Bell, “On the Production and Reproduction of Sound by Light,” Am. J. Sci. 20, 305 (1880)
    [2] W. C. Rontgen, “Upon the Production of Sound by Radiant Energy ,”Phil. Mag. J. Sci. 11, 510 (1881)
    [3] J. Tyndall, “ Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. 31, 307 (1881)
    [4] W.H. Preece,“On the Conversion of Radiation Energy into Sonorous Vibrations ,”Proc. R. Soc. 31, 506 (1881)
    [5] M.L. Viegerov,“Eine Methode der Gasanalyse, Beruhend auf der Optisch-Akustischen Tyndall-Rontgenerscheinung,” Dokl. Akad. Nauk SSSR 19, 687 (1938)
    [6] K.F. Luft, “ Uber eine Neue Methode der Registrierenen Gasanalyse mit Hilfe der Absorption Ultraroter Strahlen ihne Spectrale Zerlegung,” Z. Tech. Phys. 5, 97 (1943)
    [7] E. L. Kerr, and J. G. Atwood, “The laser Illuminated Absorptivity Spectrophone: A Method for measurement of Weak Absorptivity in Gases at Laser Wavelength,” Appl. Opt. 7, 915 (1968)
    [8] F.J.M. Harren, G. Cotti, J. Oomens, and S. te L. Hekkert,“ Photoacoustic Spectroscopy in Trace Gas Monitoring,” Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.)© John Wiley & Sons Ltd, Chichester, 2203 (2000)
    [9] A. Miklos, P. Hess, and Z. Bozoki,“Application of Acoustic Resonators in Photoacoustic Trace Gas Analysis and Metrology,” Rev. Sci. Intrum. 72, 1937 (2001)
    [10] J. P. Besson, S. Schilt, and L. Thevenaz, “Sub-ppb Ammonia Detection Based on Photoacoustic Spectroscopy,” Proc.SPIE 5885, 415 (2005)
    [11] A. Schmohl, A. Miklos, P. Hess,“Effects of Adsorption-Desorption Processes on The Response Time and Accuracy of Photoacoustic of Ammonia,” Appl. Opt. 40, 2571 (2001)
    [12] A. Rossi, R. Buffa, M. Scotoni, D. Bassi, S. Iannotta, and A. Boschetti, “Optical Enhancement of Diode Laser-Photoacoustic Trace Gas Detection by Means of External Fabrt-Perot Cavity,”Appl. Phys. Lett. 87, 041110 (2005)
    [13]T. Lauria, H. Cattaneo, T. Poyhonen, V. Koskinen, and R. Hernberg,“Cantilever-based Photoacoustic Detection of Carbon Dioxide Using a Fiber-Amplifief Diode Laser,” Appl. Phys. B 83, 285-288 (2006)
    [14] 林慶順,音叉共振增強光聲光譜學在二氧化碳偵測上的應用,清華大學碩士論文
    [15] R.E. Lindley, A.M. Parkes, K.A. Keen, E.D. Mcnaghten, and A.J. Orr-Ewing, “A Sensitivity Comparison of Three Photoacoustic Cells Containing a Single Microphone, a Differential Dual Microphone or a Cantilever Pressure Sensor,” Appl. Phy. B 86, 707 2007)
    [16] http://www.ntsec.gov.tw/activity/race-1/46/junior/0308/030805.pdf
    [17] T. Schmid, “Photoacoustic spectroscopy for process analysis,” Anal Bioanal Chem 384, 1071 (2006)
    [18] http://cfa-www.harvard.edu/HITRAN/
    [19] 由中央研究院原子分子研究所孔慶昌教授提供
    [20] http://www.knowlesacoustics.com/html/reports.html
    [21] V. Koskinen, J. Fonson, J. Kauppinen, and I. Kauppinen,“Extremely Sensitive Trace Gas Analysis with Modern Photoacoustic Spectroscopy,”Vib. Spectrosc., 42, 239 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE