簡易檢索 / 詳目顯示

研究生: 高唯德
Kao, Wei-Te
論文名稱: 一個二維康托爾集上狄氏型的例子
An example of Dirichlet form on Cantor dust
指導教授: 陳國璋
Chen, Kuo-Chang
口試委員: 黃信元
Huang, Hsin-Yuan
吳昌鴻
Wu, Chang-Hong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 39
中文關鍵詞: 狄氏型康托爾集康托爾塵埃自相似集拉普拉斯算子有效阻抗
外文關鍵詞: Dirichlet form, Cantor dust, Cantor set, Self-similar set, Laplacian, Effective resistance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們從一個自相似、空間填充、非自相交的曲線,勒貝格曲線,得到靈感,而構造出了一個在二維康托爾集上狄氏型的例子,除此之外我們探討了有效阻抗,這減少了我們在最小狄利克雷能量上計算以及複雜度,更進一步地,藉由我們已經熟知的電路理論,例如串連及並聯,我們可以簡化有效阻抗計算上的難度。


    In this thesis, we give an example of Dirichlet form on Cantor dust inspired by the Lebesgue curve, which is a non-self-intersecting, self-similar, space-filling curve. Besides, we discuss the effective resistance, which plays an important role of reducing the calculation of minimum Dirichlet energy on self-similar set and the complexity of the network. Further, we reduce the calculation of effective resistance by summarizing two properties, parallel and series, which we are already familiar with in Circuit theory.

    1 Introduction --- 1 2 Dirichlet form --- 5 3 Laplacian --- 9 4 Laplacian on self-similar sets --- 17 5 Effective resistance --- 23 6 An example of Dirichlet form on Cantor dust --- 32 Bibliography --- 39

    [1] Masayoshi Hata and Masaya Yamaguti. The Takagi function and its general-
    ization. Japan Journal of Applied Mathematics, 1(1):183–199, 1984.
    [2] Jun Kigami. A harmonic calculus on the Sierpinski spaces. Japan Journal of Applied Mathematics, 6(2):259–290, 1989.
    [3] Jun Kigami. Analysis on fractals. Number 143 in Cambridge Tracts in Math- ematics. Cambridge University Press, 2001.
    [4] Ben Michael Hambly and Takashi Kumagai. Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Communications in Mathematical Physics, 295(1):29–69, 2010.
    [5] 胡家信. 分形分析引論. 現代數學基礎叢書. 科學出版社, 2013.
    [6] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet Forms and Symmetric Markov Processes. De Gruyter studies in mathematics. De Gruyter, 2011.

    QR CODE