簡易檢索 / 詳目顯示

研究生: 吳典霖
Wu, Tien-Lin
論文名稱: 新型多芳香環材料分子之合成與應用於有機發光二極體、有機場效電晶體以及石墨烯成長之開發研究
Synthesis and Applications of New Polycyclic Aromatic Hydrocarbons and Development of OLEDs, OFETs and Graphene Growth
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 刁維光
陳銘洲
邱博文
陶雨臺
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 313
中文關鍵詞: 多芳香環分子有機發光二極體有機場效電晶體石墨烯
外文關鍵詞: PAH, OLED, OFET, Graphene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    第一章節:
      我們設計並合成一系列小型多芳香環分子䓛 (chrysene),並利用易修飾取代基的特性,藉此可以調控它們的電子能階、放光波長及效率。經由我們設計的合成路徑,可以得到相較市售便宜的chrysene分子,再進一步合成3,6,9,12-四溴取代的起始物,並在3、6、9與12的四個位置分別引進苯基、炔基與氨基的官能基。經由官能基替換可改變化合物的發光波長及增加其量子產率,其螢光放光的波長為藍光範圍 (401−471 nm),而量子效率為 (0.44−0.87)。我們選擇chrysene衍生物I-6g作為客發光體應用於藍色螢光有機發光二極體 (OLED) 之元件,獲得優秀的外部量子效率高達6.31 %,並且有著合適的光色CIEx,y (0.13, 0.20) 與較低的啟動電壓3.0 V。

    第二章節:
      結合實驗室所建立的dibenzo[de,op]bistetracenes (DBBTs) 架構,我們設計並合成了一系列具有不同取代的衍生物,並將此材料於有機場效電晶體之應用。我們將2-, 10-位置上俱有甲基、叔丁基以及氟之DBBT分子製備成單晶,從X射線單晶繞射的結果我們可以瞭解各DBBT主體為近乎平面的結構且大部分衍生物為位移的π-π堆疊與人字型的排列;再將針狀的單晶作為有機場效電晶體之通道材料,進行電性量測。由於取代基的影響,各分子間的晶體堆疊的情形不同而有不一樣的電荷傳輸性質,其中以兩個甲基取代的結構II-4b之遷移率為最高,高達1.19 cm2 V-1 s-1,而電流開關比也達106。

    第三章節:
      我們設計與合成含硼與氮的多芳香環衍生物,藉由化學氣相沉積法 (CVD) 進行摻雜型石墨烯的成長,成功製備單晶與大面積的石墨烯,而後進行石墨烯物理性質的分析與量測。最後將轉移的硼摻雜的石墨烯使用圖紋化製程且替換OLED元件的ITO電極,以石墨烯作為陽極與磷光發光元件匹配並且擁有良好的發光效率,外部量子效率高達15%。



    Abstract
    Chapter I:
    A short synthesis of unsubstituted chrysene is described to provide a cheap source of this compound. This chrysene was used to prepare 3,6,9,12-tetrabromochrysene, which was subsequently transformed into various 3,6,9,12-tetrasubstituted chrysenes bearing four aryl, alkynyl, or amino groups by means of the Suzuki, Sonogashira, or Buchwald−Hartwig coupling reaction, respectively. These substituents result in large bathochromic shifts in the chrysene absorption and emission spectra. These new chrysene derivatives show blue fluorescent emission (401−471 nm) with high quantum yields (0.44−0.87). One representative chrysene (I-6g) was used as a blue fluorescent emitter in an OLED device that showed an outstanding external quantum efficiency (η = 6.31 %) with blue emission [CIE (x, y) = (0.13, 0.20)] and a low turn-on voltage (3.0 V).

    Chapter II:
    A series of substituted dibenzo[de, op]bistetracenes (DBBTs) is prepared in short steps and their applications to organic field-effect transistors (OFETs) are described. These DBBT derivatives bear one or two methyl-, tert-butyl-, or fluoro groups at the 2-, 10-positions. X-ray diffraction studies reveal that the molecular structures of these DBBTs were planar with a shifted π–π stacking or herringbone-stacked type packing in the crystalline state. These substituents perturb the degree of stacking shift because of steric effect and dipolar interaction, consequently affecting the electronic coupling between the neighboring molecules. Needle-like single crystals of DBBT derivatives were prepared by vapor phase transfer method and used for the fabrication of single-crystal field-effect transistors (SCFETs). Theoretical calculation on these DBBTs has been performed to correlate the measured field-effect mobility with their molecular stacking. The SCFET of di-methyl derivative II-4b showed the highest hole mobility (1.19 cm2 V-1 s-1) with a current on/off ratio of 106.

    Chapter III:
    PAH derivatives with heteroatom (boron or nitrogen) have been synthesize and prepared. These molecules were used to grow doped graphene by chemical vapor deposition, then we got single-crystal graphene and large area graphene and measure their physical properties. Boron-doped graphene was patterned and used as anode in a phosphorescent OLED device that showed an outstanding external quantum efficiency (η = 15.0 %).

    目錄 中文摘要---------------------------------------------------------------------------I 英文摘要-------------------------------------------------------------------------IV 發表著作------------------------------------------------------------------------VII 謝誌-----------------------------------------------------------------------------VIII 目錄------------------------------------------------------------------------------X 表目錄--------------------------------------------------------------------------XIII 圖目錄--------------------------------------------------------------------------XIV 序章 多芳香環碳氫化合物以及有機光電材料的簡介 前言 -----------------------------------------------------------------------------1 參考文獻 -----------------------------------------------------------------------11 第一章 合成3,6,9,12-四取代䓛應用於藍光有機發光二極體之研究 第一節 有機發光二極體之簡介-------------------------------------------------13 第二節 多芳香環分子應用於有機發光二極體之文獻回顧-----------------------19 第三節 合成多芳香環分子䓛的實驗動機與構想--------------------------------23 第四節 合成多芳香環分子䓛衍生物的實驗結果與討論-------------------------29 結論 ---------------------------------------------------------------------------39 實驗部分 ----------------------------------------------------------------------40 參考文獻 ----------------------------------------------------------------------55 第二章 合成新型盤狀多芳香環分子應用於單晶有機場效電晶體之研究 第一節 有機場效電晶體之簡介-------------------------------------------------58 第二節 多芳香環分子應用於有機場效電晶體之文獻回顧-----------------------62 第三節 合成新型盤狀多芳香環碳氫化合物的實驗動機與構想------------------66 第四節 合成新型盤狀多芳香環碳氫化合物的實驗結果與討論------------------72 結論 ---------------------------------------------------------------------------83 實驗部分 ----------------------------------------------------------------------84 參考文獻 ---------------------------------------------------------------------106 第三章 多芳香環碳氫化合物衍生物使用化學氣相沉積法成長摻雜型石墨烯之研究與應用 第一節 新穎奈米碳材料之簡介------------------------------------------------110 第二節 石墨烯合成與摻雜之文獻回顧-----------------------------------------119 第三節 成長摻雜型石墨烯的實驗動機與構想----------------------------------130 第四節 成長摻雜型石墨烯的實驗結果與討論----------------------------------136 結論 --------------------------------------------------------------------------151 實驗部分 ---------------------------------------------------------------------152 參考文獻 ---------------------------------------------------------------------163 附錄一 藥品資訊與儀器型號-------------------------------------------------167 附錄二 核磁共振光譜以及質譜圖--------------------------------------------175 附錄三 X射線單晶繞結構數據------------------------------------------------270 附錄四 循環伏安圖、AC2量測圖以及元件量測圖 ---------------------------303 附錄五 文獻發表-------------------------------------------------------------314

    序章
    1. M. Faraday, phil. trans. roy. soc. Lond. 1825, 115, 440.
    2. G. M. Badger, Arornatic Character and Arornaticity; Cambridge Dniv. Press, 1969, pp. 1.
    3. (a) E. Hückel, Erich ,Z. Phys. 1931, 70, 204 (b) E. Hückel, (1938), Grundzüge der Theorie ungesättiger und aromatischer Verbindungen, Berlin: Verlag Chem, 1938, pp. 77–85.
    4. (a) R. Scholl, C. Seer, R. Weitzenbök, Chem. Ber. 1910, 43, 2202. (b) R. Scholl, C. Seer, Liebigs Ann. Chem. 1912, 394, 111. (c) R. Scholl, C. Seer, Chem. Ber. 1922, 55, 330.
    5. (a) E. Clar, Polycyclic Hydrocarbons, Vol. 1 and Vol. 2, Academic Press, London, 1964. (b) E. Clar, The Aromatic Sextet, Wiley, New York, 1972. (c) E. Clar, G. Stewart, J. Am. Chem. Soc. 1953, 75, 2667. (d) E. Clar, W. Schmidt, Tetrahedron 1979, 35, 2673.
    6. M. Zander, Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, New Youk, 1983.
    7. M. Solà, Front. Chem. 2013, 1, Article 22.
    8. (a) J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839. (b) T. M. Krygowski, J. Chem. Inf. Comp. Sci. 1993, 33, 70.
    9. (a) E. Clar, D. G. Stewart, J. Am. Chem. Soc. 1952, 62, 6235. (b) R. Rieger, K. Müllen, J. Phys. Org. Chem. 2010, 23, 315. (c) J. A. Miller, Cancer Res. 1970, 30, 559. (d) J. K. Selkirk, R. G. Croy, H. V. Gelboin, Science 1974, 187, 169. (e) P. G. Shields, E. D. Bowman, A. M. Harrington, V. T. Doan, A. Weston, Cancer Res. 1993, 53, 3486. (f) P. P. Fu, H. M. Lee, R. G. Harvey, J. Org. Chem. 1980, 45, 2797. (g) J. Hu, D. Zhang, F. W. Harris, J. Org. Chem. 2005, 70, 707.
    10. A. Jabłoński, Nature 1933, 131, 839.
    11. W. D. Gill, J. Appl, Phys. 1972, 43, 5033.
    12. (a) L. Zhi, K. Müllen, J. Mater. Chem. 2008, 18, 1472. (b) L. Dössel, L. Fherghel, X. Feng, K. Müllen, Angew. Chem., Int. Ed. 2011, 50, 2540. (c) L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem., Int. Ed. 2012, 51, 7640.
    13. (a) M. Y. Han, B. zyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 2007, 98, 206805. (b) Z. Chen, Y. M. Lin, M. J. Rooks, P. Avouris, Phys. E 2007, 40, 228.
    14. K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666.
    15. (a) W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80,1339 . (b) S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T.Nguyen, R. S. Ruoff, Nature 2006, 442, 282. (c) D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101. (d) V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2009, 4, 25.
    16. (a) Y. Fogel, L. Zhi, A. Rouhanipour, D. Andrienko, H. J. Räder, K. Müllen, Macromolecules 2009, 42, 6878. (b) J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470. (c) M. Treier, C. A. Pignedoli, T. Laino, R. Rieger, K. M üllen, D. Passerone, R. Fasel, Nat. Chem. 2011, 3, 61.
    17. H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Nat. Chem. 2013, 5, 572.

    第一章
    1. P. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    2. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    3. L. C. Picciolo, H. Murata, Z. H. Kafafi, Appl. Phys. Lett. 2001, 78, 2378.
    4. B. B. Jang, S. H. Lee, Z. H. Kafafi, Chem. Mater. 2006, 18, 449.
    5. (a) Y. Shi, Z. Deng, D. Xu, Z. Chen, X. Liр, Displays 2007, 28, 97. (b) R. T. Tomova, P. K. Petrova, R. T. Stoycheva-Topalova, J. Phys.: Conf. Ser. 2010, 253, 012048.
    6. Y. Sato, T. Ogata, S. Ichinosawa, Y. Murata, Synth. Met. 1997, 91, 103.
    7. T. Sano, H. Fujii, Y. Nishio, Y. Hamada, H. Takahashi, K. Shibata Synth. Met.1997, 91, 27.
    8. J. Shi, C. W. Tang, Appl. Phys. Lett. 2002, 80, 3201.
    9. S.-H. Lin, F.-I. Wu, R.-S. Liu, Chem. Commun. 2009, 6961.
    10. C.-C. Yeh, M.-T. Lee, H.-H. Chen, C. H. Chen, Proceedings of SID’04, 2004, May 23-28, 788.
    11. K.-C. Wu, P.-J. Ku, C.-S. Lin, H.-T. Shih, F.-I. Wu, M.-J. Huang, J.-J. Lin, I.-C. Chen, C.-H. Cheng, Adv. Funct. Mater. 2008, 18, 67.
    12. H. Isobe, S.vHitosugi, T. Matsuno, T. Iwamoto, J. Ichikawa, Org. Lett. 2009, 11, 4026.
    13. H. Okamoto, M. Yamaji, S. Gohda, Y. Kubozono, N. Komura, K. Sato, H. Sugino, K. Satake, Org. Lett. 2011, 13, 2758.
    14. (a) S. Hitosugi, Y. Nakamura, T. Matsuno, W. Nakanishi, H. Isobe, Tetrahedron Lett. 2012, 53, 1180. (b) S. Hitosugi, T. Yamasaki, H. Isobe, J. Am. Chem. Soc. 2012, 134, 12442.
    15. A. S. Ionkin, W. J. Marshall, B. M. Fish, L. M. Bryman, Y. Wang, Chem. Commun. 2008, 2319.
    16. (a) G. J. Fonken, Chem.Ind.(London) 1962, 1327. (b) E. Campos-Coḿez, P. J. Campos, H. F. Gonzaĺez, M.A. Rodriguez, Tetrahedron 2012, 68, 4292. (c) C. S. LeHoullier, G. W. Gribble, J. Org. Chem. 1983, 48, 1682. (d) E. V. Blackburn, C. E. Loader, C. J. Timmons, J. Chem. Soc. 1970, 163. (e) C. C. Leznoff, R. J. Hayward, Can. J. Chem. 1972, 50, 528. (f) D. L. Nagel, R. Kupper, K. Antonson, L. Wallcave, J. Org. Chem. 1977, 42, 3626. (g) P. D. Raddo, Harvey, R. G. Tetrahedron Lett. 1988, 29, 3885. (h) T. A. Lyle, G. H. Daub, J. Org. Chem. 1979, 44, 4933. (i) A. Das, H.-H. Liao, R.-S. Liu, J. Org. Chem. 2007, 72, 9214.
    17. H.-C. Shen, J.-M. Tang, H.-K. Chang, C.-W. Yang, R.-S. Liu, J. Org. Chem. 2005, 70, 10113.
    18. T.-A. Chen, T.-J. Lee, M.-Y. Lin, S. M. A. Sohel, E. W.-K. Diau, S.-F. Lush, R.-S. Liu, Chem. -Eur. J. 2010, 16, 1826.
    19. (a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467. (b) K. Sonogashira, In Handbook of Organopalladium Chemistry for Organic Synthesis; E. Negishi, A. Meijere, Eds., Wiley: New York, 2002. (c) E. Negishi, L. Anastasia, Chem. Rev. 2003, 103, 1979.
    20. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457−2483.
    21. (a) C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett. 1995, 67, 3853. (b) S. J. Lee, J. S. Park, K.-J. Yoon, Y.-I. Kim, S.-H. Jin, S. K. Kang, Y.-S. Gal, S. Kang, J. Y. Lee, J.-W. Kang, S.-H. Lee, H.-D. Park, J.-J. Kim, Adv. Funct. Mater. 2008, 18, 3922. (c) M.-T. Lee,; H.-H. Chen, C.-H. Liao, C.-H. Tsai, C.-H. Chen, Appl. Phys. Lett. 2004, 85, 3301.
    22. (a) Y.-S. Chen, P.-Y. Kuo, T.-L Shie, D.-Y. Yang, Tetrahedron 2006, 62, 9410. (b) G. Jones II, W. R. Jackson, C.-y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294.
    23. E. A. Silinsh, Organic Molecular Crystals: Their Electronic States; Springer: Berlin, 1980.
    24. C. Huynh, G. Linstrumelle, Tetrahedron 1988, 44, 6337.
    25. J. Ranta, T. Kumpulainen, H. Lemmetyinen, A. Efimov, J. Org. Chem. 2010, 75, 5178.
    26. T.-A. Chen, R.-S. Liu, Org. Lett. 2011, 13, 4644.
    27. T. M. Figueira-Duarte, S. C. Simon, M. Wagner, S. I. Druzhinin, K. A. Zachariasse, K. Müllen, Angew. Chem. 2008, 120, 10329; Angew. Chem., Int. Ed. 2008, 47, 10175.
    28. R. S. Stoll, M. V. Peters, A. Kuhn, S. Heiles, R. Goddard, M. Bühl, C. M. Thiele, S. Hecht, J. Am. Chem. Soc. 2009, 131, 357.
    H. Zhao, C. Tanjutco, S. Thayumanavan, Tetrahedron Lett. 2001, 42, 4421.

    第二章
    1. S. M. Sze, Semiconductor Device Physics and Technology, Wiley, New York, 2nd edn, 2001, ch. 6, p. 169.
    2. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
    3. M. Madru, G. Guillaud, M. A. Sadoun, M. Maitrot, C. Clarisse, M. L. Contellec, J. J. André, J. Simon, Chem. Phys. Lett. 1987, 142, 103.
    4. (a) F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, Science 1994, 265, 1684. (b) Z. Bao,; A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108. (c) Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, A. J. Lovinger, Chem. Mater. 1997, 9, 1299. (d) H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
    5. (a) H. Meng, J. Zheng, A. J. Lovinger, B.-C. Wang, P. G. Van Patten, Z. Bao, Chem. Mater. 2003, 15, 1778. (b) M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 9414.
    6. Z. Bao, A. J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 1996, 69, 3066.
    7. A. Afzali, C. D. Dimitrakopoulos, T. L. Breen, J. Am. Chem. Soc. 2002, 124, 8812.
    8. O. D. Jurchescu, J. Baas, T. T. M. Palstra, Appl. Phys. Lett. 2004, 84, 3061.
    9. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. A. Bao, Nature 2011, 480, 504.
    10. (a) H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732. (b) T. Uemura, Y. Hirose, M. Uno, K. Takimiya, J. Takeya, Appl. Phys. Express 2009, 2, 111501.
    11. (a) H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741. (b) G. Wang, J. Swensen, D. Moses, A. J. Heeger, J. Appl. Phys. 2003, 93, 6137.
    12. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328.
    13. (a) O. Goto, S. Tomiya, Y. Murakami, A. Shinozaki, A. Toda, J. Kasahara, D. Hobara, Adv. Mater. 2012, 24, 1117. (b) M. M. Islam, S. Pola, Y.-T. Tao, Chem. Commun. 2011, 47, 6356. (c) H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao, J. Am. Chem. Soc. 2012, 134, 2760. (d) A. L. Briseno, R. J. Tseng, M. M. Ling, E. H. L. Falcao, Y. Yang, F. Wudl, Z. Bao, Adv. Mater. 2006, 18, 2320.
    14. (a) V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644. (b) V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 086602. (c) C. Reese, W.-J. Chung, M.-m. Ling, M. Roberts, Z. Bao, Appl. Phys. Lett. 2006, 89, 202108.
    15. (a) A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913. (b) Y.-H. Kim, B. Yoo, J. E. Anthony, S. K. Park, Adv. Mater. 2012, 24, 497. (c) A. Kumatani, C. Liu, Y. Li, P. Darmawan, K. Takimiya, T. Minari, K. Tsukagoshi, Sci. Rep. 2012, 2, 393. (d) J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
    16. C. D. Sheraw, T. N. Jackson, D. L. Eaton, J. E. Anthony, Adv. Mater. 2003, 15, 2009.
    17. S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, Appl. Phys. Lett. 2007, 91, 063514.
    18. H. Li, B. C. K. Tee, G. Giri, J. W. Chung, S. Y. Lee, Z. Bao, Adv. Mater. 2012, 24, 2588−2591.
    19. (a) A. N. Aleshin, J. Y. Lee, S. W. Chu, J. S. Kim, Y. W. Park, Appl. Phys. Lett. 2004, 84, 5383. (b) R. W. I. d. Boer, T. M. Klapwijk, A. F. Morpurgo, Appl. Phys. Lett. 2003, 83, 4345. (c) Y. Takeyama, S. Ono, Y. Matsumoto, Appl. Phys. Lett. 2012, 101, 083303. (d) M. Watanabe, Y. J. Chang, S.-W. Liu, T.-H. Chao, K. Goto, M. IslamMd, C.-H. Yuan,; Y.-T. Tao, T. Shinmyozu, T. J. Chow, Nat. Chem. 2012, 4, 574.
    20. S. S. Zade, M. Bendikov, Angew. Chem., Int. Ed. 2010, 49, 4012.
    21. (a) X. Feng, V. Marcon, W. Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Müllen, Nat. Mater. 2009, 8, 421. (b) A. Stabel, P. Herwig, K. Müllen, J. P. Rabe, Angew. Chem., Int. Ed., 1995, 34, 1609. (c) A. M. Van de Craats, J. M. Warman, K. Müllen, Y. Geerts, J. D. Brand, Adv. Mater. 1998, 10, 36. (d) S. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang, M. L. Steigerwald, C. Nuckolls, Angew. Chem., Int. Ed. 2005, 44, 7390. (e) S. Pola, C.-H. Kuo, W.-T. Peng, Md. M. Islam, I. Chao, Y.-T. Tao, Chem. Mater. 2012, 24, 2566. (f) C.-H. Kuo, D.-C. Huang, W.-T. Peng, K. Goto, I. Chao and Y.-T. Tao, J. Mater. Chem. C 2014, 2, 3928.
    22. (a) K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, L. D. A. Siebbeles, J. Chem. Phys. 2003, 119, 9809. (b) Y. Zhang, D. Hanifi, S. Alvarez, F. Antonio, A. Pun, L. M. Klivansky, A. Hexemer, B. Ma, Y. Liu, Org. Lett., 2011, 13, 6528.
    23. (a) A. Lv, S. R. Puniredd, J. Zhang, Z. Li, H. Zhu, W. Jiang, H. Dong, Y. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W. Hu, Z. Wang, Adv. Mater. 2012, 24, 2626. (b) W. Yue, A. Lv, J. Gao, W. Jiang, L. Hao, C. Li, Y. Li, L. E. Polander, S. Barlow, W. Hu, S. Di Motta, F. Negri, S. R. Marder, Z. Wang, J. Am. Chem. Soc. 2012, 134, 5770.
    24. (a) M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 18169. (b) A. C. Grimsdale, K. Müllen, Angew. Chem., Int. Ed. 2005, 44, 5592. (c) A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, J. M. Tour, ACS Nano 2010, 4, 1949.
    25. A. Zinke, R. Ott, Monatsh. Chem. 1950, 81, 1137.
    26. E. Clar, G.S. Fell, C. T. Ironside, A. Balsillie, Tetrahedron 1960, 10, 26.
    27. S. Pogodin, I. Agranat, Org. Lett. 1999, 1, 1387.
    28. T.-A. Chen, R.-S. Liu, Org. Lett. 2011, 13, 4644.
    29. (a) D. E. Ames, A. Opalko, Tetrahedron 1984, 40, 1919. (b) E. Jung, K. Park, J. Kim, H.-T. Jung, I.-K. Oh, S. Lee, Inorg. Chem. Commun. 2010, 13, 1329.
    30. (a) L. Zhai, R. Shukla, R. Rathore, Org. Lett. 2009, 11, 3474. (b) T. S. Navale, K. Thakur, R. Rathore, Org. Lett. 2011, 13, 1634.
    31. R. A. Laudise, C. Kloc, P. G. Simpkins, T. Siegrist, J. Cryst. Growth 1998, 187, 449.

    第三章
    1. E. A. Rohlfing, D. M. Cox, A. Kaldor, J. Chem. Phys. 1984, 81, 3322.
    2. H. W. Kroto , J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
    3. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347 ,354.
    4. S. Iijima, Nature, 1991, 354, 56.
    5. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer, Science, 2000, 289,1730.
    6. K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666.
    7. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science, 2008, 321, 385.
    8. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, Phys. Rev. Lett. 2008, 101, 196.
    9. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.
    10. (a) W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. (b) V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2009, 4, 25.
    11. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987.
    12. I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nature Commun. 2010, 73, 1.
    13. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science 2006, 312, 1191.
    14. J. C. Sheltona, H. R. Patil, J. M. Blakely, Surf. Sci. 1974, 43, 493.
    15. (a) P. R. Somani, S. P. Somani, M. Umeno, Chem. Phys. Lett. 2006, 430, 56. (b) A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, A. A. Zolotukhin, Carbon 2007, 45, 2017.
    16. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, Appl. Phys. Lett. 2008, 93, 113103.
    17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
    18. (a) A. Kumar, C. H. Le, In Handbook of Advances in Graphene Science; M. Aliofkhazraei, Eds., 2013, ISBN 978-953-51-1182-5. (b) Y. Ogawa, B. S. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, H. Hibino, H. Ago, J. Phys. Chem. Lett. 2012, 3, 219.
    19. I. Vlassiouk, M. Regmi, P. F. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 2011, 5, 6069.
    20. H. Medina, Y. C. Lin, C. Jin, C. C. Lu, C. H. Yeh, K. P. Huang, K. Suenaga, J. Robertson, P. W. Chiu, Adv. Funct. Mater. 2012, 22, 2123.
    21. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Naontech. 2008, 3, 210.
    22. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.-J. Li, Small 2009, 5, 1422.
    23. H. Z. Geng, K. K. Kim, C. Song, N. T. Xuyen, S. M. Kim, K. A. Park, D. S. Lee, K. H.An, Y. S. Lee, Y. Chang, Y. J. Lee, J. Y. Choi, A. Benayad, and Y. H. Lee, J. Mater. Chem. 2008, 18, 1261.
    24. K. C. Kwon, B. J. Kim, J.-L. Lee, S. Y. Kim, J. Mater. Chem. C 2013, 1, 2463.
    25. (a)Y. C. Lin, C. Y. Lin, P. W. Chiu, Appl. Phys. Lett. 2010, 96, 133110. (b) B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, ACSNano, 2011, 5, 5957.
    26. Y.-F. Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang, L.-J. Li, ACSNano, 2013, 7, 6522.
    27. (a)M. M. Boorum, Y. V. VasilÕev, T. Drewello, L. T. Scott, Science, 2001, 294, 828. (b) L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Blank, H. Wegner, A. de Meijere, Science 2002, 295, 1500.
    28. (a) R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646. (b) Y. Ishii, Y. Nakanishi, H. machi, S. Matsuura, K. Matsui, H. Shinohara, Y. Segawa and K. Itami, Chem. Sci. 2012, 3, 2340. (c) T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354. (d) U. H. F. Bunz, S. Menning, N. Martin, Angew. Chem. Int. Ed. 2012, 51, 7094.
    29. H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Nat. Chem. 2013, 5, 572.
    30. (a) J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470. (b) L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2012, 51, 7640.
    31. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.
    32. (a) X. W, K. Chen, D. Liu, J. Chen, Q. Miao, J. Xu, Chem. Mater. 2012, 24, 3906. (b) B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, R. S. Ruoff, ACSNano, 2012, 6, 2471.
    33. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
    34. C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, C.-H. Chuang, M. Chen, C.-I. Huang, W.-F. Pong, K.-J. Song, S.-J. Chang, J.-H. Guo, Y. Tai, M. Tsujimoto, S. Isoda, C.-W. Chen, L.-C. Chen, K.-H. Chen, ACSNano 2013, 7, 1333.
    35. H. Wang , Y. Zhou , D. Wu , L. Liao , S. Zhao , H. Peng , Z. Liu, Small 2013, 9, 1316.
    36. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, T.-W. Lee, Nat. Photonics. 2012, 6, 105.
    37. K. C. Kwon, K. S. Choi, S. Y. Kim, Adv. Funct. Mater. 2012, 22, 4724.
    38. H. Medina1, Y.-C. Lin, D. Obergfell, P.-W. Chiu, Adv. Funct. Mater. 2011, 21, 2687.
    39. C. Hoffend, M. Diefenbach, E. Januszewski, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, Dalton Trans. 2013, 42, 13826.
    40. S. Biswas, M. Müller, C. Tönshoff, K. Eichele, C. Maichle-Mössmer, A. Ruff, B. Speiser, H. F. Bettinger, Eur. J. Org. Chem. 2012, 2012, 4634.
    41. M. J. S. Dewar, R. Dietz, J. Chem. Soc. 1959, 2728.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE