簡易檢索 / 詳目顯示

研究生: 吳建霖
Wu, Jian-Lin
論文名稱: 含喹啉與異喹啉衍生物之磷光銥金屬錯合物的合成與在有機電致發光元件的應用
Quinoline and Isoquinoline Derivatives as Red and Green Phosphorescent Iridium Complexes and Their Application in Organic Electroluminescent Devices
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 310
中文關鍵詞: 喹啉異喹啉磷光銥金屬錯合物
外文關鍵詞: Quinoline, Isoquinoline, Phosphorescent, Iridium Complexes, OLED
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文包含三個章節,主要是探討合成具有新穎性的紅色及綠色磷光銥金屬錯合物。
    第一部分則是利用兩種不同的合成步驟得到相同乙烯基喹啉(vinylquinoline)或乙烯基異喹啉(vinylisoquinoline)為架構的衍生物之配位基,再與銥金屬形成紅色磷光銥錯合物。這系列銥錯合物皆為深紅色磷光的放光。而元件組成為:NPB(10nm)/TCTA(20nm)/Dopants
    (5%):CBP(or o-CzOXD)(30nm)/BCP(10nm)/Alq(50nm)/LiF(1nm)/Al
    (100nm)。當E-(PPIQ)2Ir(acac)以5%濃度摻雜在o-CzOXD之中,其元件最大放光波長為630nm,驅動電壓為3.5 V,在4.5 V時可逹最大外部量子效率為17.5 %,最大電流效率為15.1 cd/A,在4.0 V最大輝度為11.7 lm/W,並於15.0 V時可逹最大亮度24218 cd/m2。CIE的座標為(0.68, 0.31),是飽和的正紅光。
    第二部分則是合成出一系列具有非共軛性的1-苯甲基異喹啉配位基之磷光銥錯合物。1-苯甲基異喹啉在結構上有甲基的間隔,阻斷苯環與異喹啉之π電子的共軛性。其發光元件組成為:NPB(10nm)/TCTA(20nm)/Dopants(5%):CBP(or o-CzOXD)(30nm)/BCP
    (10nm)/Alq(50nm)/LiF(1nm)/Al(100nm)。當(bziq)2Ir(acac)以5%濃度摻雜在CBP時,其元件最大放光波長為546nm,驅動電壓為3.1 V,在4.5 V時可逹最大外部量子效率為18.7 %,最大電流效率為70.5 cd/A,在3.5 V時最大輝度為56.3 lm/W,並於16.0 V時可逹最大亮度62059 cd/m2。CIE的座標為(0.39, 0.58)。
    第三部分則是合成出新的一系列具有較剛硬共軛分子的DBQ配位基,與銥金屬鍵結形成銥錯合物。配位基甲基化之衍生物所形成的銥錯合物其放光波長範圍為530~536nm。最好的元件組成為:NPB(20nm)/TCTA(10nm)/(4mDBQ)2Ir(acac)(5%):CBP(30nm)/BCP(10
    nm)/Alq(50nm)/LiF(1nm)/Al(100nm)。其元件最大放光波長為518nm,驅動電壓為3.1 V,在5.0 V時可逹最大外部量子效率為24.0 %,最大電流效率為92.4 cd/A,在3.5 V時最大輝度為74.1 lm/W,並於13.0 V時可逹最大亮度186093 cd/m2。CIE的座標為(0.27, 0.66),可說是一個相當出色的綠色磷光元件。


    Abstract
    The thesis includes three parts that focuses on synthesizing various red and green phosphorescent iridium complexes.
    In the first part, the alkenylquinoline and alkenylisoquinoline derivatives were prepared by two different procedures. The iridium(III) complex cyclometalated with alkenylquinoline or alkenylisoquinoline ligangs as red-light emitters for OLED application. Those complexes show deep red phosphorescent emissions. The optimed device structure is NPB(10nm)/TCTA(20nm)/Dopants(5%):CBP(or o-CzOXD)(30nm)/BCP
    (10nm)/Alq(50nm)/LiF(1nm)/Al(100nm). When E-(PPIQ)2Ir(acac) (5%) was the emitter doped in the o-CzOXD layer, the device gave saturated red light with the emission maximum at 630 nm and show a turn-on voltage of 3.5 V, the maximum external quantum efficiency of 17.5% at 4.5 V, a current efficiency of 15.1cd/A, and a power efficiency of 11.7lm/W at 4.0 V, a maximum brightness of 24218cd/m2 at 15.0 V. The (CIE) coordinates calculated based on the EL data at 6 V are (0.68, 0.31).
    In the second part, a series of phosphorescent iridium(III) complexes with nonconjugated 1-benzylisoqunoline ligand were synthesized. The methylene spacer of the cyclometalated 1-benzylisoqunoline ligand effectively interrupts the □conjugation between the phenyl and isoquinoline moieties. The optimized device structure is NPB(10nm)/TCTA(20nm)/Dopants(5%):CBP(oro-CzOXD)(30nm)/BCP
    (10nm)/Alq(50nm)/LiF(1nm)/Al(100nm). When (bziq)2Ir(acac)(5%) was used the dopant emitter in the CBP layer, the device show the emission maximum at 546 nm and a turn-on voltage of 3.1 V, an external quantum efficiency of 18.7% at 4.5 V, a current efficiency of 70.5cd/A, and a power efficiency of 56.3lm/W at 3.5 V, a maximum brightness of 62059cd/m2 at 16.0V. The (CIE) coordinates calculated based on the EL data at 6 V are (0.39, 0.58).
    In the third part, a new series of iridium(III) complexes with cyclometalated dibenzo[h,f]quinoline(DBQ) ligands with having a rigid conjugation were systemic synthesis. The iridium complexes with methylation show green phosphorescent emissions(530~536nm). The best device structure is NPB(20nm)/TCTA(10nm)/(4mDBQ)2Ir(acac)(5%):
    CBP(30nm)/BCP(10nm)/Alq(50nm)/LiF(1nm)/Al(100nm). The device show the emission maximum at 518 nm and a turn-on voltage of 3.1 V, an external quantum efficiency of 24.0% at 5.0 V, a current efficiency of 92.4cd/A, and a power efficiency of 74.1lm/W at 3.5 V, a maximum brightness of 186093cd/m2 at 13.0 V. The (CIE) coordinates calculated based on the EL data at 6 V are (0.27, 0.66). An excellent dopant for green phosphorescent OLEDs.

    目 錄 謝誌---------------------------------------------------------------------------------I 中文摘要 ------------------------------------------------------------------------III 英文摘要 ------------------------------------------------------------------------V 表目錄 --------------------------------------------------------------------------VII 圖目錄 ---------------------------------------------------------------------------IX 第一章 緒論 ---------------------------------------------------------------------1 第二章 新型的紅色磷光發光材料 第一節 設計動機----------------------------------------------------------31 第二節 紅色磷光銥金屬錯合物之合成與物性探討---------------34 第三節 銥金屬錯合物光物理性質之探討----------------------------50 第四節 乙烯基異喹啉及衍生物之銥金屬錯合物元件性質的探討 ---------------------------------------------------------------------57 結論------------------------------------------------------------------70 第五節 合成步驟及光譜分析-------------------------------------------72 第三章 新型的非共軛形式之六圓環綠色磷光發光材料 第一節 設計動機--------------------------------------------------------92 第二節 1-苯甲基異喹啉衍生物的磷光銥錯合物之合成與物性探討--------------------------------------------------------------95 第三節 銥金屬錯合物光物理性質之探討------------------------102 第四節 1-苯甲基異喹啉及衍生物之銥金屬錯合物元件性質的探討------------------------------------------------------------107結論------------------------------------------------------------119 第五節 合成步驟及光譜分析---------------------------------------121 第四章 高效率的綠色磷光發光材料 第一節 設計動機-------------------------------------------------------146 第二節 銥金屬錯合物的合成步驟與物性探討------------------149 第三節 銥金屬錯合物光物理性質之探討------------------------158 第四節 綠色磷光銥金屬錯合物元件性質之探討---------------162 結論-------------------------------------------------------------174 第五節合成步驟及光譜分析-----------------------------------------176 藥品、儀器型號與元件製作 -----------------------------------------------184 參考文獻 -----------------------------------------------------------------------191 第五章 附錄一 核磁共振光譜資料--------------------------------------------------195 附錄二 X-ray繞射結構分析------------------------------------------------251

    參考文獻
    1. Burrows, P. E.; Gu, G.; Bulovic V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE Trans. Electron Device 1997, 44, 11888.
    2. M. Stossel, J. Staudigel, F. Steuber, J. Simmerer, A. Winnacker. Appl. Phs. A, 1999, 68, 387.
    3. Pope, P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    4. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay K. D.; Friend R.H.; Burn P. L.; Holmes A. B. Nature 1990, 347, 539.
    6. H. a. Mizes and E. M. Conwell, Phys. Rev. Lett. 1993, 70, 1505.
    7. M. E. Thompson, A. Shoustikov, Y. You, S. Sibley, M. A. Baldo, V. Koslov, E. P. Burrows, S. R. Forrest, MRS Abstract, G2.4, Spring Meeting, 1998.
    8. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
    9. D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442.
    10. Text book of Basic Optics.
    11. G. Gu, D. z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett. 1997, 22, 396.
    12. T. Tsutsui and S. Satio, in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordreccht 1993, p. 123.
    13. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, J. Am. Chem. Soc. 2001, 78, 1622.
    14. C. H. Yang, S. W. Li, Y. Chi, C. H. Wang, P. T. Chou, C. F. Shu, Inorg. Chem. 2005, 44, 7770.
    15. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Dalton Trans. 2005, 80, 1583.
    16. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 2000, 403, 750.
    17. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E.
    Thompson, R. C. Kwong, J. Am. Chem. Soc. 2001, 78, 1622.
    18. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc. 2003, 80, 12971.
    19. Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien, Y. T. Tao, P. T. Chou, S. Datta, R. S. Liu, Adv. Mater. 2003, 15, 884.
    20. Duan, J. P.; Sun, P. P.; Cheng, C. H. Adv. Mater. 2003, 15. 224-228.
    21. (a)Paulose, B. M. J. S.; Rayabarapu, D. K.; Duan, J. P.; Cheng, C. H. Adv. Mater. 2004, 16, 2003-2007. (b) Rayabarapu, D. K.; Paulose, B. M. J. S.; Duan, J. P.; Cheng, C. H. Adv. Mater. 2005, 17, 349-353
    22. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
    23. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2000, 90, 5048.
    24. W. S. Huang, J. T. Liu, C. H. Chien, Y. T. Yao, S. S. Sun, Y. S. Wen, Chem. Mater. 2004, 16, 5048.
    25. R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Weong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
    26. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818.
    27. S. J. Yeh, W. C. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen, Adv. Mater. 2005, 17, 285.
    28. C.-F. Chang, Y.-M. Cheng, Y. Chi, Y.-C. Chiu, C.-C. Lin, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang, C.-C. Wu, Angew. Chem. Int. Ed. 2008, 120, 4618.
    29. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C. Wu, Y.-M.Cheng, Y.-C. Yu, G.-H. Lee, P.-T. Chou, Adv. Mater. 2008, 20, 1-5.
    30. S.-y. Takizawa, Y. Sasaki, M. Akhtaruzzaman, H. Echizen, J.-i. Nishida, T. Iwata, S. Tokito, Y. Yamashita. J. Mater. Chem. 2007, 17, 841-849.
    31. D. M. Kang, J.-W. Kang, J. W. Park, S. O. Jung, S.-H. Lee, H.-D. Park, Y.-H. Kim, S. C. Shin, J.-J. Kim, S.-K. Kwon. Adv. Mater. 2008, 20, 2003-1007.
    32. Y.-S. Park, J.-W. Kang, D. M. Kang, J.-W. Park, Y.-H. Kim, S.-K. Kwon, J.-J. Kim. Adv. Mater. 2008, 20, 1957-1961.
    33. K. H. Fang, L. L. Wu, Y. T. Huang, C. H. Yang, I.-W. Sun, Inorg. Chim. Acta. 2006, 359, 441-450.
    34. Y. Tao,; Q. Wang,; C. Yang,; Q. Wang,; Z. Zhang,; T. Zou,; J. Qin,; D. Ma. Angew. Chem. Int. Ed. 2008, 47, 8104-8107.
    35. N. H. Martin, C. W. Jefford. Helv. Chim. Acta. 1982, 65, 762-774.
    36. H. C.Li, P. T. Chou, Y. H. Hu, Y. M. Cheng, R. S. Liu. Organometallics. 2005, 24, 1329-1335.
    37. R. Zhu, J. Lin, G. A. Wen, S. J. Liu, J. H. Wan, J. C. Feng, Q. L. Fan. Chem. Lett. 2005, 34, 1668-1669.
    38. K. Tamao, S. Kodama, I. Nakajima, M. Kumada, A. Minato, K. Suzuki. Tetrahedron. 1982, 38, 3347-3354.
    39. (a)Y. Q. Fang, G. S. Hanan. Synlett. 2003, 6, 852-854. (b)S. Khatib, S. Tal, O. Godsi, U. Peskin, Y. Eichen. Tetrahedron. 2000, 56, 6753-6771.
    40. R. P. Korivi, C.-H. Cheng. Org. Lett. 2005, 23, 5179-5182.
    41. F.-M. Hwang, H.-Y. Chen, P.-S. Chen, C.-S. Liu, Y. Chi, C.-F. Shu, F.-I. Wu, P.-T. Chou, S.-M. Peng, G.-H. Lee. Inorg. Chem. 2005, 44, 1344-1353.
    42. A. Hansson, T. Wixe, K. Bergquist, K. Wärnmark. Org. Lett. 2005, 7, 2019-2022.
    43. L. M. White, D. A. Dougherty. J. Am. Chem. Soc. 1984, 106, 3466-3474.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE