研究生: |
賴振和 Lai, Chen-Ho |
---|---|
論文名稱: |
金屬硫硒化物奈米結構之成長與性質研究 Synthesis and Properties of Metal Chalcogenide Nanostructures |
指導教授: |
陳力俊
Chen, Lin-Juann |
口試委員: |
陳力俊
鄭晃忠 許薰丰 吳文偉 李勝偉 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 156 |
中文關鍵詞: | 硫硒化物奈米結構 、鋰電池 、電化學性質 |
外文關鍵詞: | Metal Chalcogenide Nanostructures, Lithium-Ion Batteries, Electrochemical Properties |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A general solution method for the oriented growth of large-scale metal chalcogenides nanostructures has been developed. The preparation strategy for oriented growth of metal chalcogenides nanostructures combines metal chelation chemistry and dioxygen catalytic reactions. The controlled oxidation scheme by combining ethylenediamine-chalcogens and hydrazine in alkali solution has been shown to have great advantages for the fabrication of metal chalcogenides with fewer instrumental limitations. The reduction scheme, combining ethylenediamine (EDA) and hydrazine in alkali solution, has been shown to be effective in synthesizing copper nanowires. Dissolution of chalcogens, for example sulfur, in ethylenediamine can provide active polyanions such as S62- and S4-, which was suggested to be responsible for prompting redox reaction. This method is reliable and works in mild template-free conditions for the production of single-crystalline nanowire arrays directly in one step. It provides a convenient route for the large-scale growth of pure-phase metal chalcogenide nanowire arrays on diverse metal substrates without using high-pressure autoclave processes.
One-dimensional nanostructures are potential electrode materials for lithium-ion batteries. Advantages include (i) short path lengths for electrons and lithium ions transport; (ii) larger contact area between nanostructured electrode and electrolyte leading to higher charge/discharge rates; (iii) the small nanowire diameter allows for improving cycle life with better flexibility for accommodating strain of lithium ions insertion/extraction. Among the various candidates for cathode materials, nickel sulfides and copper sulfides are suitable for lithium-ion batteries because of their high lithium activity, high theoretical capacity, high electronic conduction and low cost. Compared with the commonly used commercial electrodes, the reactions of transition-metal chalcogenide electrodes involve more electrons per 3d metal (two or more) as compared with the commonly used commercial electrodes (only one).
The electrochemical measurement results of Ni3S2 and Cu2S nanowire arrays for lithium-ion battery electrode applications reveal that they have high reversible lithium storage capacity, long cycle life, good cyclic stability and high charge/discharge rate. The Ni3S2 nanowire array/Li cell was determined to be about 330 mAhg-1 and found to maintain more than 80% of the reversible capacity after 100 cycles at a rate of C/10. It was found that more than 50% of the reversible capacity could be delivered even at a 10C rate by Ni3S2 nanowire arrays. The Cu2S nanowire array/Li cell was determined to be about 230 mAhg-1 and found to maintain more than 50% of the reversible capacity after 100 cycles at a high rate of 2C. After the second cycle, the Coulombic efficiencies of the Cu2S nanowire arrays/Li cell were observed around 99%. It was found that more than 56% of the reversible capacity could be delivered even at a 20C rate by Cu2S nanowire arrays at the 50th cycle. With the simplicity of fabrication and good electrochemical performance, Ni3S2 and Cu2S nanowire arrays are promising cathode materials for the next generation of lithium-ion batteries.
A general one-step template-free solution route based on a small biomolecule L-cysteine-assisted technique has been developed to synthesize Ni3S2 nanowires directly onto the nickel current collector substrate in a high yield at a low temperature. This biomolecule-assisted solution route opens a novel and environmentally friendly biological route with less instrumental limitation to prepare metal sulfide nanomaterials and does not produce the poisonous H2S gas. The simple and inexpensive biomolecule L-cysteine is not only utilized as the sulfur source for Ni3S2 nanowires, but also as an effective morphology-directing molecule.
We have demonstrated that these Ni3S2 nanowires grown directly onto nickel current collector substrate utilizing the biomolecule-assisted approach can charge and discharge with a stable capacity of 210 mAhg-1 after being cycled 50 times. The excellent capacity for the Ni3S2 nanostructured electrode has great potential in hydrogen storage, catalytic reaction, and high-power battery applications. In addition, this simple, environmentally benign, and inexpensive biomolecule-assisted solution route can also be extended to the growth of various metal chalcogenide nanostructures directly onto the corresponding metal current collector substrates for the next generation of energy conversion and storage devices.
利用金屬錯合物活化氧催化反應(metal-complex activation of dioxygen catalytic reaction)可成功地在不同的金屬基板上使用簡易的化學溶液法製備出各式各樣相對應的金屬硫硒化物奈米結構。反應系統在鹼性環境下結合金屬錯合反應化學(metal chelation chemistry)與氧催化反應(dioxygen catalytic reaction),首次證實可有效降低液態反應試劑與固態金屬基板間存在之高介面能(interfacial energy),因此不需使用模板(template)或高壓製程(high-pressure autoclave process),即可方便地在相對應的金屬基板上成長出大面積且垂直於基板方向的金屬硫硒化物奈米結構。
將奈米材料運用在鋰離子電池電極上是相當具備前瞻性與未來應用性的做法,主要優點包括了(1)可提供較短的有效路徑利於鋰離子與電子的傳輸;(2)奈米化之後的電極與電解液間有更大的接觸面積可導致更為快速的充放電速率;(3)奈米結構的小尺寸可有效容許由鋰離子遷入遷出造成的應變進而延長使用壽命。在各式各樣鋰離子電池陰極材料中,金屬硫硒化物奈米結構是相當具有潛力的選擇,特別是一維硫化鎳與硫化銅奈米線陣列,因為它們又更加具有高理論電容值、高鋰離子反應性、為電子和鋰離子的優良導體與低成本等優點。利用一維硫化鎳奈米線陣列所組裝而成的鋰離子電池經過電化學性質測試後,發現在一百個充放電循環後還可穩定維持在約330 mAhg-1,超過80%的可逆電容量,並且在速率10C的快速充放電速率下,可維持超過50%的可逆電容量。而利用一維硫化銅奈米線陣列所組裝而成的鋰離子電池經過電化學性質測試後,發現在一百個充放電循環後還可穩定維持在約230 mAhg-1,超過50%的可逆電容量,其中庫倫效率(Coulombic efficiency)更可達99%,並且在速率20C的超快速充放電速率下,可維持超過56%的可逆電容量。這些傑出的電化學性質證實一維硫化鎳與硫化銅奈米線陣列相當具有潛力應用在下一代的鋰離子電池陰極材料上。
利用生物分子(biomolecule)半胱胺酸(cystrine)結合金屬錯合反應化學(metal chelation chemistry),可成功透過新穎的生物分子輔助(biomolecule-assisted)化學溶液法在鎳金屬電流集電極(nickel current collector substrate)上製備出一維硫化鎳奈米線陣列,其中半胱胺酸不僅可以當作表面形貌導引分子(morphology-directing molecule)促成奈米結構成長,其所含的硫氫基更可做為硫的來源,進而以相當環保且經濟實惠的方式合成硫化物奈米結構。將在金屬電流集電極上所合成的一維硫化鎳奈米線陣列做電化學儲氫測試,其良好的性質證實一維硫化鎳奈米線陣列具有絕佳潛力應用在氫燃料電池上。
Chapter 1 Introduction
1. Alivisatos, A. P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 1996, 271, 933-937.
2. Krans, J. M.; Rutenbeek, J. M. V.; Jongh, L. J. D., “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature, 1995, 375, 767-768.
3. Leobandung, E.; Guo, L.; Wang, Y.; Chou, S. Y., “Observation of Quantum Effects and Coulomb Blockade in Silicon Quantum Dot Transistors at Temperature over 100K,” Appl. Phys. Lett., 1995, 67, 938-940.
4. Taniguchi, N., “On the Basic Concept of Nanotechnology,” Proc. Intl. Conf. Prod, Part II, 1974, 18-23.
5. Feynman, R. P., “There’s Plenty of Room at the Bottom,” Eng. Sci., 1960, 23, 22-36.
6. Drexler, K. E., “Engines of Creation: The Coming Era of Nanotechnology,” Doubleday, London, 1986.
7. Hah, J. H.; Mayya, S.; Hata, M.; Jang, Y. K.; Kim, H. W.; Ryoo, M.; Woo, S. G.; Cho, H. K.; Moon, J. T., “Converging Lithography by Combination of Electrostatic Layer by Layer Self-assembly and 193 nm Photolithography: Top-down Meets Bottom-up,” J. Vac. Sci. Technol. B., 2006, 24, 2209-2213.
8. Meindl, J. D.; Chen, Q.; Davis, J. A., “Limits on Silicon Nanoelectronics for Terascale Integration,” Science, 2001, 293, 2044-2049.
9. Lieber, C. M., “The Incredible Shrinking Circuit,” Sci. Am., 2001, 285, 58-65.
10. Balzani, V.; Credi, A.; Venturi, M., “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J., 2002, 8, 5524-5532.
11. Iijima, S., “Helical Microtube of Graphitic Carbon,” Nature, 1991, 354, 56-58.
12. Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smithn, D. C.; Lieber, C. M., “Growth of Nanowires Superlattice Structures for Nanoscale and Electronics,” Nature, 2002, 415, 617-620.
13. Schmid, G.; Lifeng, F. C., “Metal Clusters and Colloids,” Adv. Mater., 1998, 10, 515-526.
14. Yang, P.; Wu, Y.; Fan, R., “Inorganic Semiconductor Nanowires,” Inter. J. Nano., 2002, 1, 1-39.
15. Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P., “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” Chem. Eur. J., 2002, 8, 1260-1268.
16. Wang, X.; Song, J.; Liu, J.; Wang, Z. L., “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 2007, 316, 102-105.
17. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., “Nanowire Dye-sensitized Solar Cells,” Nat. Mater., 2005, 4, 455-459.
18. Chen, L. J., “Silicon Nanowires: The Key Building Block for Future Electronic Devices,” J. Mater. Chem., 2007, 17, 4639-4643.
19. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N., “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321, 1066-1069.
20. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. -M., “High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-ion Battery Applications,” Nat. Mater., 2006, 5, 567-573.
21. Wu, Y.; Yang, P., “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater., 2000, 12, 605-607.
22. Chen, C. C.; Yeh, C. C., “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater., 2000, 12, 738-741.
23. Wu, Y.; Yang, P., “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., 2001, 123, 3165-3166.
24. Yazawa, M.; Koguchi, M.; Muto, A.; Ozawa, M.; Hiruma, K., “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett., 1992, 61, 2051-2053.
25. Morales, A. M.; Lieber, C. M., “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 1998, 279, 208-211.
26. Wagner, R. S.; Ellis, W. C., “Vapor-liquid-solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., 1964, 4, 89-90.
27. Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S., “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol., 1997, 15, 554-557.
28. Wang, Y. W.; Zhang, L. D.; Liang, C. H.; Wang, G. Z.; Peng, X. S., “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett., 2002, 357, 314-318.
29. Wu, X. C.; Tao, Y. R., “Growth of CdS Nanowires by Physical Vapor Deposition,” J. Cryst. Growth, 2002, 242, 309-312.
30. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F., “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc., 2001, 123, 2791-2798.
31. Wu, Z. H.; Mei, X. Y.; Kim, D.; Blumin, M.; Ruda, H. E., “Growth of Au-catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett., 2002, 81, 5177-5179.
32. Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M., “Indium Phosphide Nanowire as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature, 2001, 409, 66-69.
33. Lee, K. H.; Lee, S. W.; Vanfleet, R. R.; Sigmund, W., “Amorphous Silica Nanowires Grown by the Vapor-solid Mechanism,” Chem. Phys. Lett., 2003, 376, 498-503.
34. Johnson, M. C.; Lee, C. J.; Bourret-Courchesne, E. D.; Konsek, S. L.; Aloni, S.; Han, W. Q.; Zettl, A., “Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires,” Appl. Phys. Lett., 2004, 85, 5670-5672.
35. Yang, Y. H.; Wang, C. X.; Wang, B.; Xu, N. S.; Yang, G. W., “ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement,” Chem. Phys. Lett., 2005, 403, 248-251.
36. Pan, Z. W.; Dai, Z. R.; Wang, Z. L., “Nanobelts of Semiconducting Oxides,” Science, 2001, 291, 1947-1949.
37. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T., “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B, 1998, 58, R16024-R16026.
38. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., “Solution-liquid-solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-liquid-solid Growth,” Science, 1995, 270, 1791-1794.
Chapter 2 Lithium Ion Batteries
1. Owen, J. R., “Rechargeable Lithium Batteries,” Chem. Soc. Rev., 1997, 26, 259-267.
2. Patil, A.; Patil, V.; Shin, D. W.; Choi, J. W.; Paik, D. S.; Yoon, S. J., “Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries,” Mat. Res. Bull., 2008, 43, 1913-1942.
3. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T., “Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion,” Energy Environ. Sci., 2008, 1, 621-638.
4. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y., “On the Correlation Between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries,” Electrochimica Acta, 1999, 45, 67-86.
5. Whittingham, M. S., “Electrical Energy Storage and Intercalation Chemistry,” Science, 1976, 192, 1126-1127.
6. Rao, B. M. L.; Francis, R. W.; Christopher, H. A., “Lithium-Aluminum Electrode,” J. Electrochem. Soc., 1977, 124, 1490-1492.
7. Pietro, B. D.; Patriarca, M.; Scrosati, B., “On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries,” J. Power Sources, 1982, 8, 289-299.
8. Lazzari, M.; Scrosati, B., “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes,” J. Electrochem. Soc., 1980, 127, 773-774.
9. Yazami, R.; Touzain, P., “A Reversible Graphite-lithium Negative Electrode for Electrochemical Generators,” J. Power Sources, 1983, 9, 365-371.
10. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., “LixCoO2 (0<x≦1): A New Cathode Material for Batteries of High Energy Density,” Mat. Res. Bull., 1980, 15, 783-789.
11. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., “Lithium Insertion into Manganese Spinels,” Mat. Res. Bull., 1983, 18, 461-472.
12. Vincent, C. A., “Lithium Batteries: A 50-year Perspective, 1959-2009,” Solid State Ionics, 2000, 134, 159-167.
13. Thomas, J., “A Spectacularly Reactive Cathode,” Nat. Mater., 2003, 2, 705-707.
14. Tarascon, J. -M.; Armand, M., “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 2001, 414, 359-367.
15. Goodenough, J. B.; Kim, Y., “Challenges for Rechargeable Li Batteries,” Chem. Mater., 2010, 22, 587-603.
16. Arora, P.; White, R. E.; Doyle, M., “Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries,” J. Electrochem. Soc., 1998, 145, 3647-3667.
17. Whittingham, M. S., “Insertion Electrodes as SMART Materials: The First 25 Years and Future Promises,” Solid State Ionics, 2000, 134, 169-178.
18. Whittingham, M. S., “Lithium Batteries and Cathode Materials,” Chem. Rev., 2004, 104, 4271-4301.
19. Pouillerie, C.; Perton, F.; Biensan, P.; Peres, J. P.; Broussely, M.; Delmas, C., “Effect of Magnesium Substitution on the Cycling Behavior of Lithium Nickel Cobalt Oxide,” J. Power Sources, 2001, 96, 293-302.
20. Nishi, Y., “Lithium Ion Secondary Batteries: Past 10 Years and the Future,” J. Power Sources, 2001, 100, 101-106.
21. Levi, E.; Gofer, Y.; Aurbach, D., “On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials,” Chem. Mater., 2010, 22, 860-868.
22. Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnan, W. R., “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells,” J. Electrochem. Soc., 1991, 138, 2859-2864.
23. Yonemura, M.; Yamada, A.; Kobayashi, H.; Tabuchi, M.; Kamiyama, T.; Kawamoto, Y.; Kanno, R., “Synthesis, Structure, and Phase Relationship in Lithium Manganese Oxide Spinel,” J. Mater. Chem., 2004, 14, 1948-1958.
24. Chan, H. W.; Duh, J. G.; Lee, J. F., “Valence Change by In Situ XAS in Surface Modified LiMn2O4 for Li-ion Battery,” Electrochem. Comm., 2006, 8, 1731-1736.
25. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 1997, 144, 1188-1194.
26. Thackeray, M., “An Unexpected Conductor,” Nat. Mater., 2002, 1, 81-82.
27. Dominko, R.; Goupil, J. M.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Jamnik, J., “Impact of LiFePO4/C Composites Porosity on Their Electrochemical Performance,” J. Electrochem. Soc., 2005, 152, A858-A863.
28. Wang, Y.; Cao, G. Z., “Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries,” Adv. Mater., 2008, 20, 2251-2269.
29. Walk, C. R.; Margalit, N., “δ-LiV2O5 as a Positive Electrode Material for Lithium-ion Cells,” J. Power Sources, 1997, 68, 723-725.
30. Whittingham, M. S., “The Role of Phases in Cathode Reactions,” J. Electrochem. Soc., 1976, 123, 315-320.
31. Tsang, C.; Manthiram, A., “Synthesis of Nanocrystalline VO2 and Its Electrochemical Behavior in Lithium Batteries,” J. Electrochem. Soc., 1997, 144, 520-524.
32. Tipton, A. L.; Passerini, S.; Owens, B. B.; Smyrl, W. H., “Performance of Lithium/V2O5 Xerogel Coin Cells,” J. Electrochem. Soc., 1996, 143, 3473-3477.
33. Pistoia, G.; Pasquali, M.; Wang, G.; Li, L., “Li/Li1+xV3O8 Secondary Batteries,” J. Electrochem. Soc., 1990, 137, 2365-2370.
34. Spahr, M. E.; Novak, P.; Scheifele, W.; Haas, O.; Nesper, R., “Electrochemistry of Chemically Lithiated NaV3O8: A Positive Electrode Material for Use in Rechargeable Lithium-Ion Batteries,” J. Electrochem. Soc., 1998, 145, 421-427.
35. Gamble, F. R.; Osiecki, J. H.; Cais, M.; Pisharody, R.; DiSalvo, F. J.; Geballe, T. H., “Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors,” Science, 1971, 174, 493-497.
36. Holleck, G. L.; Driscoll, J. P., “Transition Metal Sulfides as Cathodes for Secondary Lithium Batteries: II. Titanium Sulfides,” Electrochim. Acta, 1977, 22, 647-655.
37. Winn, D. A.; Shemilt, J. M.; Steele, B. C. H., “Titanium Disulphide: A Solid Solution Electrode for Sodium and Lithium,” Mat. Res. Bull., 1976, 11, 559-566.
38. Whittingham, M. S.; Gamble, F. R., “The Lithium Intercalates of the Transition Metal Dichalcogenides,” Mat. Res. Bull., 1975, 10, 363-371.
39. Whittingham, M. S., “Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide Hosts,” Prog. Solid State Chem., 1978, 12, 41-99.
40. Whittingham, M. S., “The Electrochemical Characteristics of VSe2 in Lithium Cells,” Mat. Res. Bull., 1978, 13, 959-965.
41. Murphy, D. W.; Trumbore, F. A., “The Chemistry of TiS3 and NbSe3 Cathodes,” J. Electrochem. Soc., 1976, 123, 960-964.
42. Kim, M. G.; Cho, J., “Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries” Adv. Funct. Mater., 2009, 19, 1497-1514.
43. Besenhard, J. O., “The Electrochemical Preparation and Properties of Ionic Alkali Metal- and NR4-graphite Intercalation Compounds in Organic Electrolytes” Carbon, 1976, 14, 111-115.
44. Noel, M.; Santhanam, R., “Electrochemistry of Graphite Intercalation Compounds” J. Power Sources, 1998, 72, 53-65.
45. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A., “Thermal Formation of Mesoporous Single-crystal Co3O4 Nano-needles and Their Lithium Storage Properties,” J. Mater. Chem., 2008, 18, 4397-4401.
46. Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi, K. J.; Park, J. G., “Highly Conductive Coaxial SnO2-In2O3 Heterostructured Nanowires for Li Ion Battery Electrodes,” Nano Lett., 2007, 7, 3041-3045.
47. Lou, X. W.; Chen, J. S.; Chen, P.; Archer, L. A., “One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties,” Chem. Mater., 2009, 21, 2868-2874.
48. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Cui, Y., “High-performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 2008, 3, 31-35.
49. Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y., “New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy,” Nano Lett., 2010, 10, 1486-1491.
50. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., “Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries,” Nano Lett., 2009, 9, 3370-3374.
51. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J., “Vertically Well-aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties,” Appl. Phys. Lett., 2008, 93, 113109-1-3.
52. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J, “Free-Standing Single-Crystal NiSi Nanowires with Excellent Electrical Transport and Field Emission Properties,” J. Phys. Chem. C, 2009, 113, 2286-2289.
53. Zhou, S.; Liu, X.; Wang, D., “Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries,” Nano Lett., 2010, 10, 860-863.
54. Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F., “A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry,” Science, 2002, 296, 2012-2015.
55. Crosnier, O.; Mounsey, C.; Herle, P. S.; Taylor, N.; Nazar, L. F., “Crystal Structure and Electrochemical Behavior of Li2CuP: a Surprising Reversible Crystalline-Amorphous Transition,” Chem. Mater., 2003, 15, 4890-4892.
56. Gillot, F.; Monconduit, L.; Doublet, M. -L., “Electrochemical Behaviors of Binary and Ternary Manganese Phosphides,” Chem. Mater., 2005, 17, 5817-5823.
57. Alcantara, R.; Tirado, J. L.; Jumas, J. C.; Monconduit, L.; Olivier-Fourcade, J., “Electrochemical Reaction of Lithium with CoP3” J. Power Sources, 2002, 109, 308-312.
58. Gillot, F.; Boyanov, S.; Dupont, L.; Doublet, M. -L.; Morcrette, M.; Monconduit, L.; Tarascon, J. –M., “Electrochemical Reactivity and Design of NiP2 Negative Electrodes for Secondary Li-Ion Batteries,” Chem. Mater., 2005, 17, 6327-6337.
Chapter 4 Oriented Growth of Large-Scale Nickel Sulfide Nanowire Arrays via a General Solution Route for Lithium-Ion Battery Cathode Applications
1. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., “Nanowire Dye-sensitized Solar Cells,” Nat. Mater., 2005, 4, 455-459.
2. Wang, X.; Song, J.; Liu, J.; Wang, Z. L., “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 2007, 316, 102-105.
3. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. -M., “High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-ion Battery Applications,” Nat. Mater., 2006, 5, 567-573.
4. Wang, C. Y.; Gong, N. W.; Chen, L. J., “High-Sensitivity Solid-State Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method,” Adv. Mater., 2008, 20, 4789-4792.
5. Chen, L. J., “Silicon Nanowires: the Key Building Block for Future Electronic Devices,” J. Mater. Chem., 2007, 17, 4639-4643.
6. Yu, S. H.; Yoshimura, M., “Fabrication of Powers and Thin Film of Various Nickel Sulfides by Soft Solution-Processing Routes,” Adv. Funct. Mater., 2002, 12, 277-285.
7. Zhang, L. Z.; Yu, J. C.; Mo, M. S.; Wu, L.; Li, Q.; Kwong, K. W., “A General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils: The Case of Nickel Sulfide,” J. Am. Chem. Soc., 2004, 126, 8116-8117.
8. Cho, J., “VOx-coated LiMn2O4 Nanorod Clusters for Lithium Battery Cathode Materials,” J. Mater. Chem., 2008, 18, 2257-2261.
9. Yao, W. T.; Yu, S. H.; Wu, Q. S., “From Mesostructured Wurtzite ZnS-Nanowire/Amine Nanocomposites to ZnS Nanowires Exhibiting Quantum Size Effects: A Mild-Solution Chemistry Approach,” Adv. Funct. Mater., 2007, 17, 623-631.
10. Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T., “Modified Chemical Deposition and Physico-chemical Properties of Copper(I) Selenide Thin Films,” Appl. Surf. Sci., 2003, 211, 48-56.
11. Alivisatos, A. P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 1996, 271, 933-937.
12. Pasquariello, D. M.; Kershaw, R.; Passaretti, J. D.; Dwight, K.; Wold, A., “Low-Temperature Synthesis and Properties of Co9S8, Ni3S2, and Fe7S8,” Inorg. Chem., 1984, 23, 872-874
13. Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C.; Park, B.; Cheon, J., “Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries,” Adv. Mater., 2008, 20, 4269-4273.
14. Chang, Y.; Lye, M. L.; Zeng, H. C., “Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires,” Langmuir, 2005, 21, 3746-3748.
15. Li, Y. D.; Wang, Z. Y.; Ding, Y., “Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine,” Inorg. Chem., 1999, 38, 4737-4740.
16. Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M. S.; Berger, S., “Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes,” Nano Lett., 2003, 3, 857-862.
17. Li, Y. D.; Ding, Y.; Liao, H. W.; Qian, Y. T., “Room-temperature Conversion Route to Nanocrystalline Mercury Chalcogenides HgE (E=S,Se,Te),” J. Phys. Chem. Solids, 1999, 60, 965-968.
18. Jiang, C. H.; Hosono, E.; Zhou, H. S., “Nanomaterials for Lithium Ion Batteries,” Nano Today, 2006, 1, 28-33.
19. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A., “Thermal Formation of Mesoporous Single-crystal Co3O4 Nano-needles and Their Lithium Storage Properties,” J. Mater. Chem., 2008, 18, 4397-4401.
20. Wang, Y.; Cao, G. Z., “Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries,” Adv. Mater., 2008, 20, 2251-2269.
21. Zhu, X. J.; Wen, Z. Y.; Gu, Z. H.; Huang, S. H., “Room-Temperature Mechanosynthesis of Ni3S2 as Cathode Material for Rechargeable Lithium Polymer Batteries,” J. Electrochem. Soc., 2006, 153, A504-A507.
22. Han, S. C.; Kim, H. S.; Song, M. S.; Kim, J. H.; Ahn, H. J.; Lee, J. Y., “Nickel Sulfide Synthesized by Ball Milling as an Attractive Cathode Material for Rechargeable Lithium Batteries,” J. Alloys Compd., 2003, 351, 273-278.
23. Kim, J. S.; Ahn, H. J.; Ryu, H. S.; Kim, D. J.; Cho, G. B.; Kim, K. W.; Nam, T. H.; Ahn, J. H., “The Discharge Properties of Na/Ni3S2 Cell at Ambient Temperature,” J. Power Sources, 2008, 178, 852-856
24. Xue, M. Z.; Zhou, Y. N.; Zhang, B.; Yu, L.; Zhang, H.; Fu, Z. W.; “Fabrication and Electrochemical Characterization of Copper Selenide Thin Film by Pulsed Laser Deposition,” J. Electrochem. Soc., 2006, 153, A2262-A2268.
25. Lu, Z. W.; Klein, B. M.; Singh, D. J., “Electronic Structure of Heazlewoodite Ni3S2,” Phys. Rev. B, 1996, 54, 13542-13545.
26. Wang, J. H.; Cheng, Z.; Bredas, J. L.; Liu, M., “Electronic and Vibrational Properties of Nickel Sulfides from First Principles,” J. Chem. Phys., 2007, 127, 214705-1-8.
27. Li, H.; Balaya, P.; Maier, J., “Li-Storage Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides,” J. Electrochem. Soc., 2004, 151, A1878-A1885.
28. Parise, J. B., “Structure of Hazelwoodite (Ni3S2),” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1980, 36, 1179-1180.
29. Metcalf, P. A.; Crooker, B. C.; McElfresh, M.; Kakol, Z.; Honig, J. M., “Low-temperature Electronic and Magnetic Properties of Single-crystal Ni3S2,” Phys. Rev. B, 1994, 50, 2055-2060.
30. Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L., “Direct Growth of SnO2 Nanorod Array Electrodes for Lithium-ion Batteries,” J. Mater. Chem., 2009, 19, 1859-1864.
31. Zhang, T.; Gao, J.; Fu, L. J.; Yang, L. C.; Wu, Y. P.; Wu, H. Q., “Natural Graphite Coated by Si Nanoparticles as Anode Materials for Lithium Ion Batteries,” J. Mater. Chem., 2007, 17, 1321-1325.
32. Hsu, K. F.; Tsay, S. Y.; Hwang, B. J., “Synthesis and Characterization of Nano-sized LiFePO4 Cathode Materials Prepared by a Citric Acid-based Sol-gel Route,” J. Mater. Chem., 2004, 14, 2690-2695.
33. Thomas, J., “A Spectacularly Reactive Cathode,” Nat. Mater., 2003, 2, 705-706.
34. Thackeray, M., “An Unexpected Conductor,” Nat. Mater., 2002, 1, 81-82.
35. Park, J. C.; Kim, J.; Kwon, H.; Song, H., “Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials,” Adv. Mater., 2008, 20, 803-807.
36. Muraliganth, T.; Murugan, A. V.; Manthiram, A., “Nanoscale Networking of LiFePO4 Nanorods Synthesized by a Microwave-solvothermal Route with Carbon Nanotubes for Lithium Ion Batteries,” J. Mater. Chem., 2008, 18, 5661-5668.
37. Novotny, C. J.; Yu, E. T.; Yu, P. K. L., “InP Nanowire/Polymer Hybrid Photodiode,” Nano Lett., 2008, 8, 775-779.
38. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Cui, Y., “High-performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 2008, 3, 31-35.
39. Chan, C. K.; Zhang, X. F.; Cui, Y., “High Capacity Li Ion Battery Anode Using Ge Nanowires,” Nano Lett., 2008, 8, 307-309.
40. Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zlang, W. J.; Li, Y. Q.; Lee, S. T., “Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays,” Adv. Funct. Mater., 2007, 17, 1501-1506.
41. Liufu, S. C.; Chen, L. D.; Yao, Q.; Huang, F. Q., “In Situ Assembly of CuS Quantum-Dots into Thin Film: A Highly Conductive P-Type Transparent Film,” J. Phys. Chem. C, 2008, 112, 12085-12088.
42. Davey, R. J.; Black, S. N.; Bromley, L. A.; Cottier, D.; Dobbs, B.; Rout, J. E., “Molecular Design Based on Recognition at Inorganic Surfaces,” Nature, 1991, 353, 549-550.
43. Ledenkov, S. F.; Sharnin, V. A.; Chistyakova, G. V., “Effect of Hydrogen Bonding of Solvent on the Thermodynamic Stability of Cadmium Ethylenediamine Complexes,” Russ. Chem. Bull., 2004, 53, 758-765.
44. Simándi, L. I., in “Catalytic Activation of Dioxygen by Metal Complexes,” Vol. 13, Kluwer Academic Publishers, Dordrecht, Holland, 1992.
45. Huang, K. W.; Wang, J. H.; Chen, H. C.; Hsu, H. C.; Chang, Y. C.; Lu, M. Y.; Lee, C. Y.; Chen, L. J., “Supramolecular Nanotubes with High Thermal Stability: a Rigidity Enhanced Structure Transformation Induced by Electron-beam Irradiation and Heat,” J. Mater. Chem., 2007, 17, 2307-2312.
46. Karlin, K. D.; Kaderli, S.; Zuberbuhler, A. D., “Kinetics and Thermodynamics of Copper(I)/Dioxygen Interaction,” Acc. Chem. Res., 1997, 30, 139-147.
47. Marmorstein, D.; Yu, T. H.; Striebel, K. A.; McLarnon, F. R.; Hou, J.; Cairns, E. J., “Electrochemical Performance of Lithium/sulfur Cells with Three Different Polymer Electrolytes,” J. Power Sources, 2000, 89, 219-226.
48. Peled, E.; Golodnitsky, D.; Strauss, E.; Lang, J.; Lavi, Y., “Li/CPE/FeS2 Rechargeable Battery,” Electrochim. Acta, 1998, 43, 1593-1599.
Chapter 5 Direct Growth of High-Rate Capability and High Capacity Copper Sulfide Nanowire Array Cathode for Lithium-Ion Batteries
1. Wang, X.; Song, J.; Liu, J.; Wang, Z. L., “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 2007, 316, 102-105.
2. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., “Nanowire Dye-sensitized Solar Cells,” Nat. Mater., 2005, 4, 455-459.
3. Chen, L. J., “Silicon Nanowires: The Key Building Block for Future Electronic Devices,” J. Mater. Chem., 2007, 17, 4639-4643.
4. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N., “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321, 1066-1069.
5. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. -M., “High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-ion Battery Applications,” Nat. Mater., 2006, 5, 567-573.
6. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L., “Growth of ZnO Nanotube Arrays and Nanotubes Based Piezoelectric Nanogenerators,” J. Mater. Chem., 2009, 19, 9260-9264.
7. Yin, L. W.; Lee, S. T., “Wurtzite-Twinning-Induced Growth of Three-Dimensional II-VI Ternary Alloyed Nanostructures and their Tunable Band Gap Energy Properties,” Nano Lett., 2009, 9, 957-963.
8. Yan, J.; Fang, X. S.; Zhang, L. D.; Bando, Y.; Gautam, U. K.; Dierre, B.; Sekiguchi, T.; Golberg, D., “Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures,” Nano Lett., 2008, 8, 2794-2799.
9. Mu, L. X.; Shi, W. S.; Chang, J. C.; Lee, S. T., “Silicon Nanowire-Based Fluorescence Sensor for Cu(II),” Nano Lett., 2008, 8, 104-109.
10. Wang, X. D.; Song, J. H.; Wang, Z. L., “Nanowire and Nanobelt Arrays of Zinc Oxide from Synthesis to Properties and to Novel Devices,” J. Mater. Chem., 2007, 17, 711-720.
11. Alivisatos, A. P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 1996, 271, 933-937.
12. Pasquariello, D. M.; Kershaw, R.; Passaretti, J. D.; Dwight, K.; Wold, A., “Low-Temperature Synthesis and Properties of Co9S8, Ni3S2, and Fe7S8,” Inorg. Chem., 1984, 23, 872-874
13. Lee, H. N.; Yoon, S. W.; Kim, E. J.; Park, J. H., “In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials,” Nano Lett., 2007, 7, 778-784.
14. Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D., “Controllable Synthesis of Cu2S Nanocrystals and Their Assembly into a Superlattice,” J. Am. Chem. Soc., 2008, 130, 10482-10483.
15. Warner, J. H., “Self-Assembly of Ligand-Free PbS Nanocrystals into Nanorods and Their Nanosculpturing by Electron-Beam Irradiation,” Adv. Mater., 2008, 20, 784-787.
16. Wen, X. G.; Zhang, W. X.; Yang, S. H.; Dai, Z. R.; Wang, Z. L., “Solution Phase Synthesis of Cu(OH)2 Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors,” Nano Lett., 2002, 2, 1397-1401.
17. Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Lee, W. F.; Huang, C. T.; Hwang, B. J.; Chen, L. J., “Oriented Growth of Large-scale Nickel Sulfide Nanowire Arrays via a General Solution Route for Lithium-ion Battery Cathode Applications,” J. Mater. Chem., 2009, 19, 7277-7283.
18. Liu, H. M.; Wang, Y. G.; Li, L.; Wang, K. X.; Hosono, E.; Zhou, H. S., “Facile Synthesis of NaV6O15 Nanorods and Its Electrochemical Behavior as Cathode Material in Rechargeable Lithium Batteries,” J. Mater. Chem., 2009, 19, 7885-7891.
19. Wang, C. Y.; Gong, N. W.; Chen, L. J., “High-Sensitivity Solid-State Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method,” Adv. Mater., 2008, 20, 4789-4792.
20. Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P., “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals,” Nano Lett., 2008, 8, 2551-2555.
21. Martinson, A. B. F.; Elam, J. W.; Pellin, M. J., “Atomic Layer Deposition of Cu2S for Future Application in Photovoltaics,” Appl. Phys. Lett., 2009, 94, 123107-1-3.
22. Liufu, S. C.; Chen, L. D.; Yao, Q.; Huang, F. Q., “In Situ Assembly of CuS Quantum-Dots into Thin Film: A Highly Conductive P-Type Transparent Film,” J. Phys. Chem. C, 2008, 112, 12085-12088.
23. Chen, L.; Xia, Y. D.; Liang, X. F.; Yin, K. B.; Yin, J.; Liu, Z. G.; Chen, Y., “Nonvolatile Memory Devices with Cu2S and Cu-Pc Bilayered Films,” Appl. Phys. Lett., 2007, 91, 073511-1-3.
24. Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.; Nakayama, T.; Aono, M., “Nanometer-scale Switches Using Copper Sulfide,” Appl. Phys. Lett., 2003, 82, 3032-3034.
25. Chang, Y.; Lye, M. L.; Zeng, H. C., “Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires,” Langmuir, 2005, 21, 3746-3748.
26. Lou, W. J.; Chen, M.; Wang, X. B.; Liu, W. M., “Size Control of Monodisperse Copper Sulfide Faceted Nanocrystals and Triangular Nanoplates,” J. Phys. Chem. C, 2007, 111, 9658-9663.
27. Lim, W. P.; Low, H. Y.; Chin, W. S., “From Winter Snowflakes to Spring Blossoms: Manipulating the Growth of Copper Sulfide Dendrites,” Cryst. Growth Des., 2007, 7, 2429-2435.
28. Wen, X. G.; Yang, S. H., “Cu2S/Au Core/Sheath Nanowires Prepared by a Simple Redox Deposition Method,” Nano Lett., 2002, 2, 451-454.
29. Wang, S. H.; Yang, S. H.; Dai, Z. R.; Wang, Z. L., “The Crystal Structure and Growth Direction of Cu2S Nanowire Arrays Fabricated on a Copper Surface,” Phys. Chem. Chem. Phys., 2001, 3, 3750-3753.
30. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon J.-M.; Schalkwijk, W. V. “Nanostructured Materials for Advanced Energy Conversion and Storage Devices,” Nat. Mater., 2005, 4, 366-377.
31. Li, Y. D.; Wang, Z. Y.; Ding, Y., “Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine,” Inorg. Chem., 1999, 38, 4737-4740.
32. Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M. S.; Berger, S., “Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes,” Nano Lett., 2003, 3, 857-862.
33. Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G., “Oriented Nanostructures for Energy Conversion and Storage,” ChemSusChem, 2008, 1, 676-697.
34. Wang, Y.; Cao, G. Z., “Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries,” Adv. Mater., 2008, 20, 2251-2269.
35. Jiang, C. H.; Hosono, E.; Zhou, H. S., “Nanomaterials for Lithium Ion Batteries,” Nano Today, 2006, 1, 28-33.
36. Guo, Y. G.; Hu, J. S.; Wan, L. J., “Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices,” Adv. Mater., 2008, 20, 2878-2887.
37. Kim, J. S.; Kim, D. Y.; Cho, G. B.; Nam, T. H.; Kim, K. W.; Ryu, H. S.; Ahn, J. H.; Ahn, H. J., “The Electrochemical Properties of Copper Sulfide as Cathode Material for Rechargeable Sodium Cell at Room Temperature,” J. Power Sources, 2009, 189, 864-868.
38. Bonino, F.; Lazzari, M.; Rivolta, B.; Scrosati, B., “Electrochemical Behavior of Solid Cathode Materials in Organic Electrolyte Lithium Batteries: Copper Sulfides,” J. Electrochem. Soc., 1984, 131, 1498-1502.
39. Debart, A.; Dupont, L.; Patrice R.; Tarascon, J.-M., “Reactivity of Transition Metal (Co, Ni, Cu) Sulphides Versus Lithium: The Intriguing Case of the Copper Sulphide,” Solid State Sci., 2006, 8, 640-651.
40. Li, H.; Balaya, P.; Maier, J., “Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides,” J. Electrochem. Soc., 2004, 151, A1878-A1885.
41. Zhang, T.; Gao, J.; Fu, L. J.; Yang, L. C.; Wu, Y. P.; Wu, H. Q., “Natural Graphite Coated by Si Nanoparticles as Anode Materials for Lithium Ion Batteries,” J. Mater. Chem., 2007, 17, 1321-1325.
42. Hsu, K. F.; Tsay, S. Y.; Hwang, B. J., “Synthesis and Characterization of Nano-sized LiFePO4 Cathode Materials Prepared by a Citric Acid-based Sol-gel Route,” J. Mater. Chem., 2004, 14, 2690-2695.
43. Thomas, J., “A Spectacularly Reactive Cathode,” Nat. Mater., 2003, 2, 705-706.
44. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Cui, Y., “High-performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 2008, 3, 31-35.
45. Chan, C. K.; Zhang, X. F.; Cui, Y., “High Capacity Li Ion Battery Anode Using Ge Nanowires,” Nano Lett., 2008, 8, 307-309.
46. Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L., “Direct Growth of SnO2 Nanorod Array Electrodes for Lithium-ion Batteries,” J. Mater. Chem., 2009, 19, 1859-1864.
47. Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zlang, W. J.; Li, Y. Q.; Lee, S. T., “Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays,” Adv. Funct. Mater., 2007, 17, 1501-1506.
48. Davey, R. J.; Black, S. N.; Bromley, L. A.; Cottier, D.; Dobbs, B.; Rout, J. E., “Molecular Design Based on Recognition at Inorganic Surfaces,” Nature, 1991, 353, 549-550.
49. Grijalva, H.; Inoue, M.; Boggavarapu, S.; Calvert, P., “Amorphous and Crystalline Copper Sulfides, CuS,” J. Mater. Chem., 1996, 6, 1157-1160.
50. Zhang, L. Z.; Yu, J. C.; Mo, M. S.; Wu, L.; Li, Q.; Kwong, K. W., “A General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils: The Case of Nickel Sulfide,” J. Am. Chem. Soc., 2004, 126, 8116-8117.
51. Li, Y. D.; Ding, Y.; Liao, H. W.; Qian, Y. T., “Room-temperature Conversion Route to Nanocrystalline Mercury Chalcogenides HgE (E=S,Se,Te),” J. Phys. Chem. Solids, 1999, 60, 965-968.
52. Simándi, L. I., in “Catalytic Activation of Dioxygen by Metal Complexes,” Vol. 13, Kluwer Academic Publishers, Dordrecht, Holland, 1992.
53. Huang, K. W.; Wang, J. H.; Chen, H. C.; Hsu, H. C.; Chang, Y. C.; Lu, M. Y.; Lee, C. Y.; Chen, L. J., “Supramolecular Nanotubes with High Thermal Stability: A Rigidity Enhanced Structure Transformation Induced by Electron-beam Irradiation and Heat,” J. Mater. Chem., 2007, 17, 2307-2312.
54. Karlin, K. D.; Kaderli, S.; Zuberbuhler, A. D., “Kinetics and Thermodynamics of Copper(I)/Dioxygen Interaction,” Acc. Chem. Res., 1997, 30, 139-147.
55. Yu, S. H.; Yoshimura, M., “Fabrication of Powers and Thin Film of Various Nickel Sulfides by Soft Solution-Processing Routes,” Adv. Funct. Mater., 2002, 12, 277-285.
56. Tarascon, J.-M.; Armand, M., “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 2001, 414, 359-367.
Chapter 6 Biomolecule-Assisted Solution Route and Electrochemical Hydrogen Storage of Nickel Sulfide Nanowire Arrays Grown Directly on Nickel Current Collectors
1. Wang, X.; Song, J.; Liu, J.; Wang, Z. L., “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 2007, 316, 102-105.
2. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N., “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321, 1066-1069.
3. Chen, L. J., “Silicon Nanowires: The Key Building Block for Future Electronic Devices,” J. Mater. Chem., 2007, 17, 4639-4643.
4. Alivisatos, A. P., “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 1996, 271, 933-937.
5. Pasquariello, D. M.; Kershaw, R.; Passaretti, J. D.; Dwight, K.; Wold, A., “Low-Temperature Synthesis and Properties of Co9S8, Ni3S2, and Fe7S8,” Inorg. Chem., 1984, 23, 872-874
6. Warner, J. H., “Self-Assembly of Ligand-Free PbS Nanocrystals into Nanorods and Their Nanosculpturing by Electron-Beam Irradiation,” Adv. Mater., 2008, 20, 784-787.
7. Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Lee, W. F.; Huang, C. T.; Hwang, B. J.; Chen, L. J., “Oriented Growth of Large-scale Nickel Sulfide Nanowire Arrays via A General Solution Route for Lithium-ion Battery Cathode Applications,” J. Mater. Chem., 2009, 19, 7277-7283.
8. Liu, H. M.; Wang, Y. G.; Li, L.; Wang, K. X.; Hosono, E.; Zhou, H. S., “Facile Synthesis of NaV6O15 Nanorods and Its Electrochemical Behavior as Cathode Material in Rechargeable Lithium Batteries,” J. Mater. Chem., 2009, 19, 7885-7891.
9. Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J., “Direct Growth of High-rate Capability and High Capacity Copper Sulfide Nanowire Array Cathodes for Lithium-ion Batteries,” J. Mater. Chem., 2010, 20, 6638-6645.
10. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L., “Growth of ZnO Nanotube Arrays and Nanotubes Based Piezoelectric Nanogenerators,” J. Mater. Chem., 2009, 19, 9260-9264.
11. Yin, L. W.; Lee, S. T., “Wurtzite-Twinning-Induced Growth of Three-Dimensional II-VI Ternary Alloyed Nanostructures and their Tunable Band Gap Energy Properties,” Nano Lett., 2009, 9, 957-963.
12. Yan, J.; Fang, X. S.; Zhang, L. D.; Bando, Y.; Gautam, U. K.; Dierre, B.; Sekiguchi, T.; Golberg, D., “Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures,” Nano Lett., 2008, 8, 2794-2799.
13. DeSimone, J. M., “Practical Approaches to Green Solvents,” Science, 2002, 297, 799-803.
14. Raveendran, P.; Fu, J.; Wallen, S. L., “Completely “Green” Synthesis and Stabilization of Metal Nanoparticles,” J. Am. Chem. Soc., 2003, 125, 13940-13941.
15. Lu, Q. Y.; Gao, F.; Komarneni, S., “Biomolecule-Assisted Synthesis of Highly Ordered Snowflakelike Structures of Bismuth Sulfide Nanorods,” J. Am. Chem. Soc., 2004, 126, 54-55.
16. Mi, J. L.; Lock, N.; Sun, T.; Christensen, M.; Sondergaard, M.; Hald, P.; Hng, H. H.; Ma, J.; Iversen, B. B., “Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi2Te3 Nanostring-Cluster Hierarchical Structure,” ACS Nano, 2010, 4, 2523-2530.
17. Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M., “Biological Synthesis of Triangular Gold Nanoprisms,” Nat. Mater., 2004, 3, 482-488.
18. Mao, C.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M., “Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires,” Science, 2004, 303, 213-217.
19. Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M.; Young, M., “Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis,” Adv. Mater., 2002, 14, 415-418.
20. Labrenz, M.; Druschel, G. K.; Thomsen-Ebert, T.; Gillbert, B.; Welch, S. A.; Kemner, K. M.; Logan, G. A.; Summons, R. E.; Stasio, G. D.; Bond, P. L.; Lai, B.; Kelly, S. D.; Banfield, J. F., “Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria,” Science, 2000, 290, 1744-1747.
21. Shenton, W.; Pum, D.; Sleytr, U. B.; Mann, S., “Synthesis of Cadmium Sulphide Superlattices Using Self-assembled Bacterial S-layers,” Nature, 1997, 389, 585-587.
22. Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M., “Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum,” J. Am. Chem. Soc., 2002, 124, 12108-12109.
23. Barglik-Chory, Ch.; Remenyi, Ch.; Strohm, H.; Muller, G., “Adjustment of the Band Gap Energies of Biostabilized CdS Nanoparticles by Application of Statistical Design of Experiments,” J. Phys. Chem. B, 2004, 108, 7637-7640.
24. Zhang, B.; Ye, X.; Hou, W.; Zhao, Y.; Xie, Y., “Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods,” J. Phys. Chem. B, 2006, 110, 8978-8985.
25. Rogner, H. H., “Hydrogen Technologies and the Technology Learning Curve,” Int. J. Hydrogen Energy, 1998, 23, 833-840.
26. Schlapbach, L.; Zuttel, A., “Hydrogen-storage Materials for Mobile Applications,” Nature, 2001, 414, 353-358.
27. Goo, N. H.; Woo, J. H.; Lee, K. S., “Mechanism of Rapid Degradation of Nanostructured Mg2Ni Hydrogen Storage Alloy Electrode Synthesized by Mechanical Alloying and The Effect of Mechanically Coating with Nickel,” J. Alloys Compd., 1999, 288, 286-293.
28. Cohen, R. L.; Wernick, J. H., “Hydrogen Storage Materials: Properties and Possibilities,” Science, 1981, 214, 1081-1087.
29. Skowronski, J. M.; Scharff, P.; Pfander, N.; Cui, S., “Room Temperature Electrochemical Opening of Carbon Nanotubes Followed by Hydrogen Storage,” Adv. Mater., 2003, 15, 55-57.
30. Dai, G. P.; Liu, C.; Liu, M.; Wang, M. Z.; Cheng, H. M., “Electrochemical Hydrogen Storage Behavior of Ropes of Aligned Single-Walled Carbon Nanotubes,” Nano Lett., 2002, 2, 503-506.
31. Chen, J.; Kuriyama, N.; Yuan, H.; Takeshita, H. T.; Sakai, T., “Electrochemical Hydrogen Storage in MoS2 Nanotubes,” J. Am. Chem. Soc., 2001, 123, 11813-11814.
32. Gao, P.; Zhang, M.; Niu, Z.; Xiao, Q., “A Facile Solution-chemistry Method for Cu(OH)2 Nanoribbon Arrays with Noticeable Electrochemical Hydrogen Storage Ability at Room Temperature,” Chem. Commun., 2007, 5197-5199.
33. Sakai, T.; Uehara, I.; Ishikawa, H., “R&D on Metal Hydride Materials and Ni-MH Batteries in Japan,” J. Alloys Compd., 1999, 293, 762-769.
34. Parise, J. B., “Structure of Hazelwoodite (Ni3S2),” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1980, 36, 1179-1180.
35. Metcalf, P. A.; Crooker, B. C.; McElfresh, M.; Kakol, Z.; Honig, J. M., “Low-temperature Electronic and Magnetic Properties of Single-crystal Ni3S2,” Phys. Rev. B, 1994, 50, 2055-2060.
36. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Cui, Y., “High-performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 2008, 3, 31-35.
37. Burford, N.; Eelman, M. D.; Mahony, D. E.; Morash, M., “Definitive Identification of Cysteine and Glutathione Complexes of Bismuth by Mass Spectrometry: Assessing the Biochemical Fate of Bismuth Pharmaceutical Agents,” Chem. Commun., 2003, 146-147.
Chapter 8 Future Prospects
1. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J., “Vertically Well-aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties,” Appl. Phys. Lett., 2008, 93, 113109-1-3.
2. Zhou, S.; Liu, X.; Wang, D., “Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries,” Nano Lett., 2010, 10, 860-863.
3. Szczech, J. R.; Jin, S., “Nanostructured Silicon for High Capacity Lithium Battery Anodes,” Energy Environ. Sci., 2011, 4, 56-72.
4. Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F., “A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry,” Science, 2002, 296, 2012-2015.
5. Pralong, V.; Souza, D. C. S.; Leung, K. T.; Nazar, L. F., “Reversible Lithium Uptake by CoP3 at Low Potential: Role of The Anion,” Electrochem. Commun., 2002, 4, 516-520.
6. Fujita, W.; Awaga, K., “Reversible Structural Transformation and Drastic Magnetic Change in a Copper Hydroxides Intercalation Compound,” J. Am. Chem. Soc., 1997, 119, 4563-4564.
7. Thornton, J. A.; Anderson, W. W., “High Performance All-sputter Deposited Cu2S/CdS Junctions,” Appl. Phys. Lett., 1982, 40, 622-624.
8. Sagade, A. A.; Sharma, R., “Copper Sulfide (CuxS) as An Ammonia Gas Sensor Working at Room Temperature,” Sens. Actuators. B, 2008, 133, 135-143.
9. Peng, C.; Luo, J. L.; Sanger, A. R.; Chuang, K. T., “Sulfur-Tolerant Anode Catalyst for Solid Oxide Fuel Cells Operating on H2S-Containing Syngas,” Chem. Mater., 2010, 22, 1032-1037.
10. Grgicak, C. M.; Giorgi, J. B., “Improved Performance of Ni- and Co-YSZ Anodes via Sulfidation to NiS- and CoS-YSZ. Effects of Temperature on Electrokinetic Parameters,” J. Phys. Chem. C, 2007, 111, 15446-15455.