研究生: |
劉智豪 |
---|---|
論文名稱: |
Consistent thermal boundary conditions for 2-D and 3-D thermal lattice Boltzmann simulations 熱晶格波茲曼法二維與三維邊界條件之發展 |
指導教授: | 林昭安 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 晶格波茲曼法 、溫度邊界條件 、自然對流 |
外文關鍵詞: | lattice Boltzmann method, thermal boundary conditions, natural convection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Consistent 2-D and 3-D thermal boundary conditions with
three different formulations for thermal lattice Boltzmann
simulations are proposed. The unknown energy distribution functions are made functions of known energy distribution functions and correctors, where the correctors at the boundary nodes are obtained directly from the definition of internal energy density. The proposed thermal boundary conditions are applied to two-dimensional thermal Poiseuille flow, thermal Couette flow, thermal Couette flow
with wall injection, natural convection in a square cavity, and three-dimensional thermal Poiseuille flow in a square duct. Numerical simulations indicate that each formulation is second-order accurate, and maintains accuracy over a wide range of Rayleigh numbers.
[1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, "Lattice Boltzmann model for simulation of magnetohydrodynamics", Physics Review Letters 67, 3776, (1991).
[2] Y. H. Qian, D. d'Humiµeres, and P. Lallemand, "Lattice BGK model for Navier-Stokes equation", Europhysics Letters 17, 479, (1992).
[3] S. Chen and G. D. Doolen, "Lattice Boltzmann method for fluid flow", Annual Reviews of Fluid Mechanics 30 329, (1998).
[4] U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the Navier-Stokes equation", Physics Review Letters 56, 1505, (1986).
[5] S. Wolfram, "Cellular automaton fluids 1: Basic theory", Journal Statistic Physics 45, 471, (1986).
[6] F. J. Higuera, S. Sussi, and R. Benzi, "3-dimensional flows in complex geometries with the lattice Boltzmann method", Europhysics Letters 9, 345, (1989).
[7] F. J. Higuera, and J. Jem¶enez, "Boltzmann approach to lattice gas simulations", Europhysics Letters 9, 663, (1989).
[8] P. L. Bhatnagar, E. P. Gross, and M. Grook, "A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component
systems", Physics Reviews E 94, 511, (1954).
[9] S. Harris, "An introduction to the throry of the Boltzmann equation", Holt, Rinehart and Winston, New York, (1971).
[10] Y. H. Qian, D. d'Humi¶eres, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation", Europhysics Letters 17, 479, (1992).
[11] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method", Physics Reviews A 45, R5339, (1992).
[12] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, "Lattice gas hydrodynamics in two and three dimensions", Complex
System 1, 649, (1987).
[13] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, "Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics", Physics Fluids 6, 1285, (1994).
[14] G. McNamara, A. L. Garcia, and B. J. Alder, "Stabilization of thermal lattice Boltzmann models", Journal Statistic Physics 81, 395, (1995).
[15] X. He, S. Chen, and G. D. Doolen, "A novel thermal model for the lattice Boltzmann method in incompressible limit", Journal Computational Physics 146, 282, (1998).
[16] Y. Peng, C. Shu, and Y. T. Chew, "Simplified thermal lattice Boltzmann model for incompressible thermal flows", Physics Reviews E 68, 026701, (2003).
[17] Yong Shi, T. S. Zhao, and Z. L. Guo, "Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit", Physics Reviews E70, 066310, (2004).
[18] G. McNamara and B. Alder, "Analysis of the lattice Boltzmann treatment of hydrodynamics", Physica A194, 218, (1993).
[19] X. He, Q. Zou, L. S. Luo, and M. Dembo, "Analytic solution of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model", Journal Statistic Physics 87, 115, (1997).
[20] P. A. Skordos, "Initial and boundary conditions for the lattice Boltzmann method", Physics Reviews E 48, 4823, (1993).
[21] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, "A consistent hydrodynamic boundary condition for the lattice Boltzmann method", Physics Fluids 7, 203, (1995).
[22] T. Inamuro, M. Yoshino, and F. Ogino, "A non-slip boundary condition for lattice Boltzmann simulation", Physics Fluids 7, 2928, (1995).
[23] S. Chen, D. O. Martinez, and R. Mei, "On boundary conditions in lattice Boltzmann methods", Physics Fluids 8, 2527, (1996).
[24] Q. Zou and X. He, "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model", Physics Fluids 9, 1591, (1997).
[25] C. F. Hou, "Development of boundary condition in lattice Boltzmann method", master thesis, National Tsing Hua University, Taiwan, (2006).
[26] A. D'Orazio, S. Succi, and C. Arrighettic, "Lattice Boltzmann simulation of open flows with heat transfer", Physics Fluids 15, 2778, (2003).
[27] G. H. Tang, W. Q. Tao, and Y. L. He, "Thermal boundary condition for the thermal lattice Boltzmann equation", Physics Reviews E 72, 016703, (2005).
[28] Tamas I. Gombosi, "Gas kinetic theorym", Cambridge University Press, (1994).
[29] X. He and L. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation", Physics Reviews E 56, 6811, (1997).
[30] Y. Peng, C. Shu, and Y. Chew, "A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity", Journal Computational Physics 193, 260, (2003).
[31] Z. Guo, C. Zheng, and B. Shi, "Discrete lattice effects on the forcing term in the lattice Boltzmann method", Physics Reviews E 65, 046308, (2002).
[32] F. M. White, "Viscous fluid flow (third edition)", McGraw-Hill, New York, (2006).
[33] G. De Vahl Davis, "Natural convection of air in a square cavity: a bench mark numerical solution", International Journal Numerical Methods Fluids 3, 249,
(1983).