簡易檢索 / 詳目顯示

研究生: 張弘豫
Chang, Hung-Yu
論文名稱: 串並聯式雙足機器人建置之虛實整合與控制
Design and Control of a Bipedal Robot with Serial-Parallel Hybrid Mechanism via Cyber-Physical-System
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員: 林紀穎
Lin, Chi-Ying
劉承賢
Liu, Cheng-Hsien
楊佩良
Yang, Patricia J.
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 64
中文關鍵詞: 串並聯式雙足機器人自適應致動器角動量線性倒單擺模型
外文關鍵詞: Serial-Parallel Mechanism Bipedal Robot, Proprioceptive Actuator, Angular Momentum Linear Inverted Pendulum Model
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建構新一代雙足機器人系統,整體內容涵蓋機構設計、虛擬環境建置與底層控制三大面向。機構上,透過四連桿及特殊連桿組(2-RSU-1-U)構建並聯式機構於膝關節及踝關節,使系統動態近似於倒單擺系統,從而利於以簡化模型實現整體控制,更採用可背向驅動的致動器於各關節,以便藉由扭矩控制實現互動行為。虛擬環境部分,利用ROS2結合Gazebo建構模擬環境,進行物理環境的模擬驗證,並使用開源函示庫(Pinocchio )進行動力學參數的計算。底層控制上,針對不同支撐狀態構建控制架構。雙支撐狀態下,透過運動學調控骨盆與腳底的相對姿態,實現穩定站立與骨盆軌跡追蹤;在單支撐狀態下,鑒於機構的優勢,故引入混成控制架構,將機器人等效為角動量線性倒單擺模型,並通過設計不同的踝關節控制器,實現單腳平衡及質心軌跡追蹤。經由驗證,目前機器人實體具備低下肢轉動慣量及實現高頻寬控制的特性,並已成功利用虛擬環境實現底層控制的動態模擬。


    This research aims to develop a next-generation bipedal robot system, covering three main aspects: mechanical design, virtual environment construction, and low-level control.
    Mechanically, the system features a parallel mechanism at the knee and ankle joints, constructed using a four-bar linkage and a special link assembly (2-RSU-1-U). This setup approximates the dynamics of an inverted pendulum system, facilitating overall control through simplified models. The robot employs backdrivable actuators at each joint, allowing for interactive behavior through torque control. In terms of the virtual environment, ROS2 combined with Gazebo is used to construct the simulation environment for physical environment validation, while the open-source library Pinocchio is utilized for calculating dynamic parameters. For low-level control, a control framework is developed for different support states. In the double-support state, kinematic adjustments are made to the relative posture of the pelvis and foot to achieve stable standing and pelvis trajectory tracking. In the single-support state, taking advantage of the mechanism's design, a hybrid control framework is introduced, modeling the robot as an angular momentum linear inverted pendulum. Different ankle joint controllers are designed to achieve single-leg balance and centroid trajectory tracking.
    Verification shows that the physical robot features low lower limb momentum of inertia and high-bandwidth control capabilities, and dynamic simulation of low-level control has been successfully achieved using the virtual environment.

    1. 緒論 .............................................1 1.1 研究動機與目的 .................................1 1.2 文獻回顧 .........................................4 1.3 行走模型 ........................................7 1.4 論文簡介 .......................................12 2. 硬體建置 ........................................13 2.1 機構設計 .......................................13 2.2 機電架構 .......................................22 2.3 硬體實作與驗證 .................................25 3. 虛擬環境 ........................................28 3.1 模擬軟體介紹 ..................................28 3.2 虛擬系統架構 ..................................31 4. 雙足模型控制架構 .................................32 4.1 角動量線性倒單擺模型(ALIPM) ................32 4.2 運動學模型推導 .................................34 4.3 雙支撐控制 ......................................38 4.4 單支撐與擺動腳控制 ............................40 5. 上層軌跡規劃 .....................................47 5.1 動態推導 ........................................47 5.2 擺動腳放置規劃 ................................47 5.3 具體結果 ........................................50 6. 實驗結果 .........................................52 6.1 雙支撐下運動學控制實驗 .......................52 6.2 單支撐混合模型實驗 ............................53 6.3 基於ALIPM之行走實驗 ..........................59 7. 結論與未來工作 ...................................60 7.1 結論 ............................................60 7.2 未來工作 .........................................60 8. 參考文獻 .........................................62

    [1] HONDA. "History of ASIMO Development." https://global.honda/innovation/robotics/ASIMO/history.html (accessed.
    [2] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, "Humanoid robot HRP-3," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: IEEE, pp. 2471-2478.
    [3] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. i. Nakaoka, and S. Kajita, "Cybernetic human HRP-4C," in 2009 9th IEEE-RAS International Conference on Humanoid Robots, 2009: IEEE, pp. 7-14.
    [4] B.-K. Cho, S.-S. Park, and J.-h. Oh, "Controllers for running in the humanoid robot, HUBO," in 2009 9th IEEE-RAS International Conference on Humanoid Robots, 2009: IEEE, pp. 385-390.
    [5] B. Dynamics. "Atlas | Partners in Parkour. ." https://youtu.be/tF4DML7FIWk (accessed.
    [6] A. Robotics. "Digit." https://agilityrobotics.com/robots (accessed.
    [7] Tesla. "Tesla AI Day 2022." https://www.youtube.com/live/ODSJsviD_SU?feature=share (accessed.
    [8] B. G. Katz, "A low cost modular actuator for dynamic robots," Massachusetts Institute of Technology, 2018.
    [9] S. Lohmeier, T. Buschmann, M. Schwienbacher, H. Ulbrich, and F. Pfeiffer, "Leg design for a humanoid walking robot," in 2006 6th IEEE-RAS International Conference on Humanoid Robots, 2006: IEEE, pp. 536-541.
    [10] Y. Liu, J. Shen, J. Zhang, X. Zhang, T. Zhu, and D. Hong, "Design and control of a miniature bipedal robot with proprioceptive actuation for dynamic behaviors," in 2022 International Conference on Robotics and Automation (ICRA), 2022: IEEE, pp. 8547-8553.
    [11] K. G. Gim, J. Kim, and K. Yamane, "Design and fabrication of a bipedal robot using serial-parallel hybrid leg mechanism," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 5095-5100.
    [12] G. A. Pratt and M. M. Williamson, "Series elastic actuators," in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1995, vol. 1: IEEE, pp. 399-406.
    [13] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, "Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots," Ieee transactions on robotics, vol. 33, no. 3, pp. 509-522, 2017.
    [14] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics. Springer, 2014.
    [15] M. Vukobratović and B. Borovac, "Zero-moment point—thirty five years of its life," International journal of humanoid robotics, vol. 1, no. 01, pp. 157-173, 2004.
    [16] S. Kajita et al., "Biped walking stabilization based on linear inverted pendulum tracking," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 4489-4496.
    [17] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, "The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation," in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), 2001, vol. 1: IEEE, pp. 239-246.
    [18] J. H. Park and K. D. Kim, "Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control," in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), 1998, vol. 4: IEEE, pp. 3528-3533.
    [19] A. Albert and W. Gerth, "Analytic path planning algorithms for bipedal robots without a trunk," Journal of Intelligent and Robotic Systems, vol. 36, no. 2, pp. 109-127, 2003.
    [20] S. Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," in 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), 2003, vol. 2: IEEE, pp. 1620-1626.
    [21] K. i. Nagasaka, H. Inoue, and M. Inaba, "Dynamic walking pattern generation for a humanoid robot based on optimal gradient method," in IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), 1999, vol. 6: IEEE, pp. 908-913.
    [22] Y. Gong and J. W. Grizzle, "Zero dynamics, pendulum models, and angular momentum in feedback control of bipedal locomotion," Journal of Dynamic Systems, Measurement, and Control, vol. 144, no. 12, p. 121006, 2022.
    [23] 蔡禾庭, "整合重心估測與力矩控制於提昇雙足機器人行走穩定性," 碩士, 動力機械工程學系, 國立清華大學, 2017.
    [24] 鄭逸倫, "整合力矩控制與重心估測並利用增強式學習提升雙足機器人行走穩定性," 碩士, 動力機械工程學系, 國立清華大學, 2018.
    [25] 黃凱辰, "基於雙質量倒單擺動態之雙足機器人速度/力矩混成控制與步態規劃," 碩士, 動力機械工程學系, 國立清華大學, 2020.
    [26] 殷昭駿, "基於預觀控制之步態規劃於運動學與動力學混成控制之雙足機器人," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2021. [Online]. Available: https://hdl.handle.net/11296/pjs823
    [27] 邱笠維, "應用強化學習於混成控制雙足機器人之步態規劃," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2022. [Online]. Available: https://hdl.handle.net/11296/e2sd3w
    [28] 楊景苡, "運動學與動力學混成控制雙足機器人之蹺蹺板平衡研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2023. [Online]. Available: https://hdl.handle.net/11296/zw6bu5
    [29] F. Negrello et al., "Walk-man humanoid lower body design optimization for enhanced physical performance," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016: IEEE, pp. 1817-1824.
    [30] J. Carpentier et al., "The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives," in 2019 IEEE/SICE International Symposium on System Integration (SII), 2019: IEEE, pp. 614-619.
    [31] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

    QR CODE