簡易檢索 / 詳目顯示

研究生: 呂夏瑀
Lyu, Xia-Yu
論文名稱: 設計開發便攜式低磁場核磁共振系統元件及控制界面軟體
Design and development of portable low-field Nuclear Magnetic Resonance system components and control interface software
指導教授: 王福年
Wang, Fu-Nien
口試委員: 郭立威
Guo, Li-Wei
彭旭霞
Peng, Hsu-Hsia
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 磁共振元件低磁場磁共振便攜式磁共振射頻線圈發射接收轉換器虛擬實驗室
外文關鍵詞: NMR components, Low-field NMR, Portable NMR, RF Coil, T/R Switch, LabVIEW
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統磁共振因其非介入、無輻射、影像品質出色等方面的優勢,在化學、醫學、生物、能源等領域有廣泛的應用。但傳統磁共振常採用超導磁體導致成本高昂,且體型巨大使掃描便捷性不佳的兩個缺點,使磁共振難以應用到中小型研究機構或基礎建設薄弱地區,且對於一些大型待測物或特殊情況難以掃描。本研究的目的是設計開發基於低磁場永久磁鐵的便攜式磁共振系統元件,包含自製射頻線圈、信號發射接收轉化器和使用LabVIEW設計控制界面軟體,這些元件具有低成本、便攜式和易開發的特性。本篇論文介紹了自製射頻線圈和信號發射接收轉化器從設計、模擬、製作到檢測的全過程,介紹LabVIEW軟體設計的人機界面及其後台程式,並展示人機控制界面操作流程以及進行各功能的驗證測試。最後將上述自製元件、永久磁體和商用放大器整合為小型磁共振系統,進行純水的磁共振掃描,實驗結果顯示未接收到明顯磁共振訊號。我們進行各部件的分析並嘗試解決後,確定無明顯訊號的主要原因是由於信號發射接收轉化器對發射端射頻訊號的衰減能力不足。未來工作方向為提高發射接收轉换器的衰減能力,將有望偵測到磁共振訊號。


    Nuclear Magnetic Resonance technology has become a powerful non-invasive, non-radiative, and excellent image quality analytical tool for a wide range of applications from chemistry, to the branches of medicine, biology, and energy. Nowadays, however, conventional Nuclear Magnetic Resonance (NMR) or Magnetic Resonance Imaging (MRI) mostly base on the superconducting magnet, so the whole system’s manufacturing and maintenance costs are extremely high. And the huge size of the convenient NMR/MRI is not really convenient to scan when samples are too large or under special circumstances. It is difficult to build up magnetic resonance for small research institutions or weak infrastructure areas, because of its high cost. The aim of this thesis was to design and develop portable NMR components based on low-field permanent magnet, including a home-made Radio Frequency coil (RF coil), a signal Transmit and Receive Switch (T/R Switch), and a user interface base on LabVIEW software. The advantages of these components contained decreasing the cost of building up the NMR system down, portability and ease of development. We describe in some details the whole process of design, simulation, development and validation of home-made RF coil and T/R Switch. The user interface LabVIEW programming methods and functions will be presented, and we display the operation process of user interface and verify each function in the following chapter. The above components, permanent magnet and commercial amplifiers are integrated into a low-field portable magnetic resonance system for detect testing of pure water phantom NMR signals. While the NMR signal remains yet to be detected. This might be due to several reasons, the most plausible underlying cause is the T/R Switch insufficient attenuation capability for the RF pulse from the transmitter. The follow up research will be to improve the attenuation capacity or increase the number of T/R Switch.

    2.1. 磁場中的原子核 13 2.2. 拉莫爾頻率 15 2.3. 射頻脈衝激發和弛豫 17 2.4. 磁共振訊號 19 3. 射頻線圈設計 22 3.1. 射頻線圈基本原理 22 3.2. RLC諧振電路 23 3.2.1. 串聯諧振 24 3.2.2. 並聯諧振 25 3.2.3. 品質因子 26 3.2.4. S參數 26 3.3. 匹配和調諧 28 3.4. 射频线圈模擬 30 3.5. 射頻線圈製作 31 3.6. 射频线圈測試 34 3.7. 射頻線圈的性能分析 37 3.7.1. 與商用高頻射頻線圈比較 37 3.7.2. 射頻線圈內阻對SNR的影響 39 3.7.3. 射頻線圈改進方法 40 4. 第四章 發射/接收轉換器 42 4.1. 發射/接收轉換器原理 42 4.2. 四分之一波長網路原理 44 4.3. 四分之一波長網路模擬 47 4.4. 發射/接收轉換器製作 48 4.5. 發射/接收轉化器測試 50 4.5.1. 模擬射頻脈衝發射時 50 4.5.2. 模擬接收磁共振訊號時 60 5. 第五章 使用者界面 63 5.1. LABVIEW程式總覽 63 5.2. 發射射頻脈衝程式 66 5.2.1. 初始階段 66 5.2.2. 射頻發射階段 66 5.3. 接收和處理磁共振訊號程式 68 5.3.1. 實時接收和分析功能 68 5.3.2. 求平均值和儲存功能 69 5.4. 使用者界面功能测试 70 5.4.1. 發射和實時接收功能測試 70 5.4.2. 求平均值和儲存功能測試 71 5.5. 未來工作 73 6. 第六章 討論 74 6.1. 系統測試結果 74 6.1.1. 功率放大器測試 78 6.1.2. 調控功率放大器輸出 79 7. 第七章 未來工作 82 7.1. 主動式發射/接收轉換器 82 7.2. 便攜式磁振造影規劃 83 參考資料 84

    1. Rabi, I.I., Zacharias, Jerrold R, Millman, Sidney, Kusch, Polykarp A new method of measuring nuclear magnetic moment. Physical Review, 1938. 53(4): p. 318.
    2. Filler, A., The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. The Internet Journal of Neurosurgery, 2010. 7(1): p. 1-69.
    3. Arnold, J., Packard, ME Variations in absolute chemical shift of nuclear induction signals of hydroxyl groups of methyl and ethyl alcohol. The Journal of Chemical Physics, 1951. 19(12): p. 1608-1609.
    4. Gabillard, A steady state transient technique in nuclear resonance. Physical Review, 1952. 85(4): p. 694.
    5. Klein, H.-M., clinical low field strength magnetic resonance imaging: a practical guide to accessible MRI. 2015: Springer.
    6. Ogbole, G., Adeleye, AO, Adeyinka, AO, Magnetic resonance imaging: Clinical experience with an open low-field-strength scanner in a resource challenged African state. Journal of neurosciences in rural practice, 2012. 3(2): p. 137.
    7. Sepponen, R.E., Sipponen, Jorma T, Sivula, Arto, Low field (0.02 T) nuclear magnetic resonance imaging of the brain. Journal of computer assisted tomography, 1985. 9(2): p. 237-241.
    8. Obungoloch J, H.J., Consevage S, et al. , Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. Magn Reson Mater Physics, Biol Med. , 2018. 31: p. 665-676.
    9. Macovski A, C.S., Novel approaches to low‐cost MRI. Magn Reson Med., 1993. 30: p. 221-230.
    10. Venook, R.D., Matter, Nathaniel I, Ramachandran, Meena, Prepolarized magnetic resonance imaging around metal orthopedic implants. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2006. 56(1): p. 177-186.
    11. John, C., Braginski Alex, I, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems. 2006, Wiley-VCH.
    12. Espy, M.A., et al., Progress toward a deployable SQUID-based ultra-low field MRI system for anatomical imaging. 2014. 25(3): p. 1-5.
    13. Savukov, I., et al., Non-cryogenic ultra-low field MRI of wrist–forearm area. 2013. 233: p. 103-106.
    14. Zotev, V.S., et al., SQUID-based microtesla MRI for in vivo relaxometry of the human brain. 2009. 19(3): p. 823-826.
    15. Lother S, S.S., Neuberger T, Jakob PM, Fidler F., Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low‐field MRI. Magn Reson Mater Physics, Biol Med., 2016. 29: p. 691–698.
    16. Vaughan JT, W.B., Idiyatullin D, et al., Progress toward a portable MRI system for human brain imaging. . Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016: p. Abstract 498.
    17. Goldman, M., et al., Application of the integrated NMR-TDEM method in groundwater exploration in Israel. 1994. 31(1-4): p. 27-52.
    18. Schirov, M., A. Legchenko, and G.J.E.g. Creer, A new direct non-invasive groundwater detection technology for Australia. 1991. 22(2): p. 333-338.
    19. Blümich, B., et al., The NMR-mouse: construction, excitation, and applications. 1998. 16(5-6): p. 479-484.
    20. Casanova, F. and B.J.J.o.M.R. Blümich, Two-dimensional imaging with a single-sided NMR probe. 2003. 163(1): p. 38-45.
    21. Perlo, J., F. Casanova, and B.J.J.o.M.R. Blümich, 3D imaging with a single-sided sensor: an open tomograph. 2004. 166(2): p. 228-235.
    22. Ren, Z.H., et al. Magnet array for a portable magnetic resonance imaging system. in 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). 2015. IEEE.
    23. Cooley, C., Stockmann, JP, LaPierre, C. Implementation of lowcost, instructional tabletop MRI scanners. in Proceedings of the ISMRM 22nd Scientific Meeting and Exhibition. 2014.
    24. McDaniel, P.C., et al., The MR Cap: A single‐sided MRI system designed for potential point‐of‐care limited field‐of‐view brain imaging. 2019.
    25. Ashvin Bashyam, C.J.F., and Michael J Cima,, Portable, single-sided magnetic resonance sensor for hydration status assessment via multicomponent T2 relaxometry. ISMRM, 2019.
    26. J., J., Remote NMR well logging. Geophysics., 1981: p. 46:415.
    27. Borisjuk, L., H. Rolletschek, and T.J.T.P.J. Neuberger, Surveying the plant’s world by magnetic resonance imaging. 2012. 70(1): p. 129-146.
    28. Scheenen, T., et al., Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. 2007. 144(2): p. 1157-1165.
    29. Windt, C.W. and P.J.T.p. Blümler, A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. 2015. 35(4): p. 366-375.
    30. Zhang, P., et al., Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). 2018. 89: p. 775-785.
    31. Jackson, J.A., L.J. Burnett, and J.F.J.J.o.M.R. Harmon, Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field. 1980. 41(3): p. 411-421.
    32. Smith, N.B., Webb, Andrew, Introduction to medical imaging: physics, engineering and clinical applications. 2010: Cambridge university press.
    33. Hoult, D.I., Richards, RE The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 1976. 24(1): p. 71-85.
    34. Hornak, J.P., Szumowski, Jerzy, Bryant, Robert G Elementary single turn solenoids used as the transmitter and receiver in magnetic resonance imaging. Magnetic resonance imaging, 1987. 5(3): p. 233-237.
    35. Hoult, D.I., Deslauriers, Roxanne A high‐sensitivity, high‐B1 homogeneity probe for quantitation of metabolites. Magnetic Resonance in Medicine, 1990. 16(3): p. 411-417.
    36. 俎栋林, 核磁共振成像仪-构造原理和物理设计. 2015: 科学出版社,.
    37. https://www.researchgate.net/figure/Surface-impedance-of-the-REBG-structure-calculated-using-the-parallel-RLC-circuit_fig2_276493311, A.f. Resistor Loaded EBG Surfaces for Slot Antenna Design - Scientific Figure on ResearchGate. [cited 2019 24 Sep, ].
    38. l Mispelter, J., M. Lupu, and A. Briguet, NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines. 2006: Imperial College Press.
    39. Hoult, D., Lauterbur, Paul C, The sensitivity of the zeugmatographic experiment involving human samples. Journal of Magnetic Resonance, 1979. 34(2): p. 425-433.
    40. Kumar, A., Edelstein, William A, Bottomley, Paul A Noise figure limits for circular loop MR coils. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2009. 61(5): p. 1201-1209.
    41. Ma, Q., Chan, KC, Kacher, Daniel F, Superconducting RF coils for clinical MR imaging at low field1. Academic radiology, 2003. 10(9): p. 978-987.
    42. Blasiak, B., Volotovskyy, Vyacheslav, Deng, Charlie, Tomanek, Boguslaw, An optimized solenoidal head radiofrequency coil for low-field magnetic resonance imaging. Magnetic resonance imaging, 2009. 27(9): p. 1302-1308.
    43. 邱关源., 电路. . 1982: 人民教育出版社, .
    44. Subramanian, V., Epel, Boris, Mailer, Colin, Halpern, Howard J A passive dual-circulator based transmit/receive switch for use with reflection resonators in pulse EPR. Concepts in magnetic resonance. Part B, Magnetic resonance engineering, 2009. 35(3): p. 133.
    45. Thapa, B., Kaggie, Joshua, Sapkota, Nabraj, , Design and development of a general‐purpose transmit/receive (T/R) switch for 3T MRI, compatible for a linear, quadrature and double‐tuned RF coil. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2016. 46(2): p. 56-65.
    46. Asfour, A., Low-Field NMR/MRI Systems Using Labview and Advanced Data Acquisition Techniques. Practical Applications Solutions Using Labview TM Software, 2011: p. 17-40.
    47. Wright, S.M., Brown, David G, A desktop magnetic resonance imaging system. Magnetic Resonance Materials in Physics, Biology and Medicine, 2001. 13(3): p. 177-185.

    QR CODE