研究生: |
黃浩恩 Huang, Hao-En |
---|---|
論文名稱: |
結合奇異點檢測與維度降低之強健演算法於高光譜影像分析 Joint robust outlier detection and dimension reduction for hyperspectral image analysis |
指導教授: |
祁忠勇
Chi, Chong-Yung |
口試委員: |
張陽郎
Chang, Yang-Lang 祁忠勇 Chi, Chong-Yung 簡仁宗 Chien, Jen-Tzung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 奇異點 、維度降低 、高光譜影像 |
外文關鍵詞: | outlier, dimension reduction, hyperspectral image |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高光譜影像分解(hyperspectral unmixing)是指從高光譜數據(hyperspectral data)中
抽取出不同物質的光譜特徵(即端元(endmember))與端元對應於地表上所含的比
例豐度圖(abundance maps)。維度降低在高光譜影像分解中是常見且首要的過程,
可降低雜訊的影響和降低運算複雜度。仿射集合配適法(affine set fitting)在端元抽
取(endmember extraction)演算法中是非常常見的降維度方法,可以使得高光譜數據
於低維度空間中有最小的平方誤差(least-squares),然而奇異點(outlier)出現於高光
譜影像中是不可避免的,奇異點會嚴重的影響仿射集合配適法的效能。在本論文
中,我們提出了強健仿射集合配適法(robust affine set fitting), 希望同時達到偵測
奇異點與提供強健仿射集合的目標。假定我們已知高光譜影像中的端元數和影像
中的奇異點個數,不同於傳統的奇異點偵測演算法需要窗戶(window)的設置,強
健仿射集合配適法是藉由估測無雜訊和奇異點影響的數據(noise-outlier-free data)
和有奇異點存在的數據(outlier-data)使此兩項數據值有最小平方誤差。接著我們提
出了RASF-NP 演算法,結合了RASF 和Neyman-Pearson 假設檢定(hypothesis testing)
我們可以進一步的估測出準確的奇異點個數。經過RASF-NP 除去奇異點之後,
高光譜影像分解將可以達到更好的效能。最後我們利用電腦模擬和真實影像實驗
(內華達州LCVF 地區採集之高光譜影像)和現存的奇異點偵測演算法做比較,驗
證了我們提出的演算法之優良效能和優良的運算效率。
Hyperspectral umnixing is a process to extract the spectral signatures (endmembers) and
the corresponding fractions (abundance maps) from the observed hyperspectral data of
an area. Dimension reduction is a common, primary step in hypserspectral unmixing
with the benefit of reducing noise effect and computation complexity. The affine set
fitting [1] which provides the best representation to a given noisy hyperspectral data in the
least-squares error sense is used as the dimension reduction method in many endmember
extraction algorithms; however, the presence of outliers in the data has been proved to
severely degrade the accuracy of affine set fitting. In this thesis, unlike conventional
outlier detectors which may be sensitive to window settings, we propose a robust affine
set fitting (RASF) algorithm for joint dimension reduction and outlier detection without
any window setting. Given the number of outliers and endmembers in advance, the RASF
algorithm is to find a data-representative affine set from the noise-outlier corrupted data,
while making the effects of outliers minimum, in the least-squares error sense. The
proposed RASF algorithm is then combined with Neyman-Pearson hypothesis testing,
termed RASF-NP, to further estimate the number of outliers present in the data. By
using RASF-NP, we can discard the outlier pixels and find a robust affine set to improve
the consequent hyperspectral unmixing processing. Finally, we present simulations and
real data experiment (AVIRIS hyperspectral data taken from LCVF site, Nevada [2])
to demonstrate the superior performance and computation efficiency of our proposed
algorithm to some existing outlier detection algorithms.
Bibliography
[1] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis based
minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE
Trans. Signal Processing, vol. 57, no. 11, pp. 4418–4432, Nov. 2009.
[2] AVIRIS Free Standard Data Products, available online: http://aviris.jpl.nasa.
gov/html/aviris.freedata.html.
[3] A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, “Chance constrained robust
minimum volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE
Trans. Geoscience and Remote Sensing, vol. 49, no. 2, pp. 4194–4209, Nov. 2011.
[4] T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and Image
Interpretation. New York: Wiley, 2004.
[5] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications. New Jersey:
John Wiley&Sons, Inc., 2007.
[6] J. M. Bioucas-Dias and A. Plaza, “Hyperspectral unmixing: Geometrical, statistical,
and sparse regression-based approaches,” in Proc. SPIE - Image and Signal
Processing for Remote Sensing XVI, vol. 7830, 2010, pp. 78 300A1–78 300A15.
[7] T. Han, D. G. Goodenough, A. Dyk, and J. Love, “Detection and correction of
abnormal pixels in hyperion images,” in Proc. IEEE Int. Geosci. and Remote Sens.
Symp., vol. 3, 2002, pp. 1327–1330.
[8] D.Stein, S.Beaven, L.Hoff, r. E.Winte, A.Schaum, and A.Stocker, “Anomaly detection
from hyperspectral imagery,” IEEE Signal Process. Mag., vol. 19, no. 1, pp.
58–69, Jan. 2002.
[9] Matteoli, M. S. Diani, and G. Corsini, “A tutorial overview of anomaly detection
in hyperspectral images,” IEEE Aerospace and Electronic Systems Magazine, IEEE,
vol. 25, no. 7, pp. 5 – 28, July 2010.
[10] M. J. Carlotee, “A cluster-based approach for detection man-made objects and
changes in imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 374–
387, Feb. 2005.
[11] S. Catterall, “Anomaly detection based on the statistics of hyperspectral imagery,”
in Proc. SPIE Conf. Imagery Spectroscopy, vol. 43, 2004, pp. 171–178.
44
[12] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern
with unknown spectral distribution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 38, no. 1, pp. 1760–1770, 1990.
[13] B. Du and L. Zhang, “Random-selection-based anomaly detector for hyperspectral
imagery,” IEEE Trans. Geoscience and Remote Sensing., vol. 49, no. 5, pp. 1578–
1589, May 2011.
[14] C.-I. Chang, “Orthogonal subspace projection (osp) revisited: A comprehensive
study and analysis,” IEEE Int. Geosci. and Remote Sens. Symp., vol. 43, no. 3,
pp. 512–518, March 2005.
[15] S.-S. C. C.-I Chang, “Anomaly detection and classification for hyperspectral imagery,”
IEEE Trans. Geoscience and Remote Sensing., vol. 40, no. 6, pp. 1314–1325,
Jun. 2002.
[16] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag, vol. 19,
no. 1, pp. 44–57, Jan. 2002.
[17] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex volume maximization
framework for hyperspectral endmember extraction,” IEEE Trans. Geo-
science and Remote Sensing - Special Issue on Spectral Unmixing of Remotely Sensed
Data, vol. 49, no. 11, pp. 4194–4209, Nov. 2011.
[18] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,”
IEEE Trans. Geosci. Rem. Sens., vol. 46, no. 8, pp. 2435–2445, 2008.
[19] J.M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm
to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4,
pp. 898–910, Apr. 2005.
[20] T.-H. Chan, W.-K.Ma, C.-Y. Chi, and A. Ambikapathi, “Hyperspectral unmixing
from a convex analysis and optimization perspective,” in Proc. First IEEE Work-
shop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), Grenoble, France, August 26-28, 2009, pp. 1–4.
[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[22] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for
blind separation of non-negative sources,” IEEE Trans. Signal Processing, vol. 56,
no. 10, pp. 5120–5134, Oct. 2008, available online: http://www.ee.cuhk.edu.hk/
~wkma/.
[23] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1985.
[24] G. Arfken and H. Weber, Mathematical Methods for Physicists. Harcourt Academic
Press, 2000.
[25] L. Ludeman, Random Processes Filtering, Estimation, and Detection. Wiley-
Interscience Publication, 2003.
45
[26] A. Delman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality
constraints,” SIAM Journal on Matrix Analysis and Applications, vol. 20,
pp. 303–353, 1999.
[27] H. W. Kuhn, “The Hungarian method for the assignment method,” Naval Research
Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[28] H. Kwon and N. M. Nasrabadi, “Kernel rx-algorithm: A nonlinear anomaly detector
for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp.
388 – 397, Feb. 2005.
[29] S.-S. Chiang, C.-I. Chang, and I. W. Ginsberg, “Unsupervised target detection in
hyperspectral images using projection pursuit,” IEEE Trans. Geoscience and Remote
Sensing., vol. 39, no. 7, pp. 1380–1391, July 2001.
[30] Q. Du, “Optimal linear unmixing for hyperspectral image analysis,” in Proc. IEEE
IGARSS, vol. 5, 2004, pp. 3219–3221.
[31] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins University
Press, 1989.