簡易檢索 / 詳目顯示

研究生: 杭孟琦
Mong-Chi Hang
論文名稱: 分子束磊晶成長氧化鎵釓薄膜於矽基板之結構與成分分析
Structure and Composition Analysis of MBE Grown Ga2O3(Gd2O3) thin films on Si
指導教授: 郭瑞年
J. Raynien Kwo
洪銘輝
Minghwei Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 72
中文關鍵詞: 分子束磊晶氧化釓氧化鎵釓X光繞射X光反射率
外文關鍵詞: MBE, Gd2O3, Ga2O3(Gd2O3), XRD, XRR
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今在矽基板金屬氧化物半導體的發展著重於研究能取代氧化矽之高介電係數電介值電極相關應用。我們之前成功地論證了氧化鎵釓/砷化鎵異質結構出色的電性及熱穩定性。近來,我們希望延伸我們的研究利用分子束磊晶系統成長高介電係數材料氧化鎵釓於矽基板上。利用X光成分分析技術(X-ray photoelectron spectroscopy)可得知成長在矽基板上的薄膜主要成分結構可分成三層,包括主要的氧化釓薄膜,在氧化物與矽基板交接面有一層釓矽酸鹽介面層,在表面部分則是氧化鎵與氧化釓的混合物。X光反射率(X-ray reflectivity)的量測可得到各層的厚度以及各介面的表面粗糙度。薄膜結構分析利用高解析度X光繞射分析(High-resolution X-ray diffraction),X光繞射分析得知超優質的單晶氧化釓成功地磊晶成長在矽基板上,其晶格不匹配比率小於百分之一,其薄膜為立方體的結構。


    The current trend of Si CMOS scaling calls for replacing SiO2 with high k dielectrics in gate related applications. Excellent electrical properties and thermodynamic stability of the Ga2O3(Gd2O3)/GaAs hetero-structures are demonstrated in our previous work. Recently, we have extended our studies of employing high k materials Ga2O3(Gd2O3) to passivity Si surface by our in-situ molecular beam epitaxy (MBE) growth method. Composition of the as grown film was analyzed by X-ray photoelectron spectroscopy analysis. The X-ray photoelectron spectroscopy result implies the composition of the deposited films on Si substrate can be separated into three layers. These include a main Gd2O3 films, a gadolinium silicate interfacial layer at oxide/substrate interface, and a mixture of Ga2O3 and Gd2O3 layer on the surface. Studies using X-ray reflectivity measurement have shown the thickness of three layers and the roughness at their interfaces. Structural and morphological studies were carried out by high-resolution X-ray diffraction. High-quality nano-scale single-crystal Gd2O3 films have been grown epitaxially on Si (111) with a lattice mismatch of <1%. The structure of the Gd2O3 films is a cubic phase.

    Ch1. Introduction and literature review 1-1 Background 1-2 The development of rare-earth oxides for dielectrics 1-2-1 Rare-earth oxide 1-2-2 Electrical properties of rare earth oxides 1-2-3 Gd2O3 on Si(100) 1-2-4 Gd2O3 on GaAs(100) 1-2-5 Ga2O3(Gd2O3) on GaAs 1-3 X-ray analysis and application Ch2. Instruments and theory 2-1 Multi-chamber Molecular beam epitaxy system 2-1-1 Molecular beam epitaxy (MBE) 2-1-2 Reflection high energy electron diffraction 2-1-3 Residual Gas Analyzer (RGA) 2-2 Instrumentation 2-2-1 Spectral ellipsometry (SE) 2-2-2 Low angle X-ray reflectivity (XRR) 2-2-3 X-ray Photoelectron Spectroscopy (XPS) 2-2-4 Transmission electronic microscope (TEM) 2-3 X-ray Diffraction and structure analysis 2-3-1 Synchrotron light source 2-3-2 X-ray diffraction (XRD) 2-3-3 Reciprocal lattice 2-3-4 Crystal truncation rod Ch3. Experimental procedure 3-1 Oxide deposition 3-2 Structure and composition analysis 3-2-1 X-ray diffraction 3-2-2 X-ray reflectivity 3-2-3 Transmission electron microscopy Ch4. Results and discussion 4-1 In-situ RHEED analysis 4-2 X-ray photoelectron Spectroscopy analysis 4-3 Low angle X-ray Reflectivity measurement 4-4 X-ray diffraction measurement 4-4-1 Coordinate axes conversion from Cubic to Hexagonal 4-4-2 X-ray diffraction measurement Ch5. Conclusion

    [1]Moore G E 1965 Electronics 38 114-117
    [2]See Moore’s law at http://www.intel.com/research/silicon/mooreslaw.htm
    [3]Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
    [4]L. Eyring, The binary rare earth oxides, in Handbook of Physics and Chemistry of Rare Earths, Vol. 3, eds. K.A. Gschneidner, Jr., and L. Eyring, North Holand, Amsterdam, p.337, 1979
    [5]H. Bergmann (ed.), Gmelin Handbuch der Anorganischen Chemie, Seltenerdelemente, Teil C1, No. 39, Springer-Verlag, Berlin, p.85, 1974
    [6]A.F. Wells, Structural Inorganic Chemistry, Oxford Science Publications, Oxford, p.543, 1984
    [7]D. Xue, K. Betzler, and H. Hesse, J. Phys. Condens. Matter, 12, 3113 (2000)
    [8]J. Kwo, M. Hong, A. R. Kortan, K.T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys, 77, 130, 2000
    [9]J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Laya), J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, J. Appl. Phys, 89, 3920, 2001
    [10]M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science, 283, pp.1897-1900, 1999
    [11]A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, Phys. Rev. B60, 10913, 1999
    [12]M. Passlack, M. Hong, J. P. Mannerts, J. Kwo, R. L. Opila, S. N. G. Chu, N. Moriya, and F. Ren, IEEE Transaction of Electron Devices, 44 No. 2, 214-225, 1997
    [13]F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, IEEE Int’1 Electron Devices Meeting (IEDM) Technical Digest, p. 943, 1996, and also in Solid State Electronics, 41 (11), 1751, 1997
    [14]M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W-Y. Hwang, and L. W. Tu, J. Crystal Growth, 175/176, pp.422-427, 1997
    [15]M. Hong, J. P. Mannaerts, M. A. Marcus, J. Kwo, A. M. Sergent, L. J. Chou, K. C. Hsieh, and K. Y. Cheng, J. Vac. Sci. Technol. B16(3), p.1395, 1998
    [16]M. Hong, F. Ren, J. M. Kuo, W. S. Hobson, J. Kwo, J. P. Mannaerts, J. R. Lothian, and Y. K. Chen, J. Vac. Sci. Technol. B16(3), p.1398, 1998
    [17]T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Electronics Letters, Vol. 37, Np. 9, 595, 2001
    [18]W. Friedrich, P. Knipping & M. von Laue, Proc. Bavarian Acad. Sci., 303 (1912)
    [19]W. L. Bragg, Proc. Roy. Soc. A, 89, 248 (1913)
    [20]M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B 14(3), May/Jun, 2297, 1996
    [21]W. Braun, "Applied RHEED," Springer-Verlag (1999)
    [22]Raymond E. March and Richard J. Hughes ; with a historical review by John F.J. Todd., “Quadrupole storage mass spectrometry” , Wiley, 1989
    [23]H. Y. Lee and T. B. Wu, J. Mater. Res. 12, 3165, 1997
    [24]L. G. Parratt, Phys. Rev. 95, 359, 195
    [25]D. K. Bowen and B. K. Tanner, Nanotechnology, 4, 175, 1993
    [26]S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297, 1988
    [27]Y. C. Jung, M. Miura, K. Ohtani, M. Ishida, Appl. Phys. Lett. 68(1996)
    [28]J. H. Underwood and T. W. Barbee, Appl. Opt. 20, 3027(1981)
    [29]"Handbook of X-ray Photoelectron Spectroscopy", ed. by C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg (Perkin-Elmer Corp., Physical Electronics Div., Minnesota, 1979), and references therein
    [30]D. K. Bowen and B. K. Tanner, nanotechnology 4. 175 (1993)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE