簡易檢索 / 詳目顯示

研究生: 牛劭鈞
Niu, Shao-Chun
論文名稱: 透過雙耳聲響系統聆聽3D聲響-- 以《太陽系之旅》虛擬實境視聽作品為例
Listening to 3D Sound Through a Binaural Audio System: A Case Study of the Virtual Reality Audiovisual Work-“Journey of Solar System”
指導教授: 蘇郁惠
Su, Yu-Huei
口試委員: 李憶萱
Lee, Yi-Hsuan
陳恒佑
Chen, Herng-Yow
學位類別: 碩士
Master
系所名稱: 藝術學院 - 音樂學系所
Music
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 175
中文關鍵詞: 空間音訊雙耳聲響技術虛擬實境球型環繞聲響
外文關鍵詞: Spatial Sound, Ambisonics, Binaural Audio System, Virtual Reality
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當今多媒體技術中,沉浸式聲響成為重要趨勢,尤其在電影、遊戲和虛擬實境(VR)應用中。聲音技術從傳統立體聲和環繞聲,進一步演進至沉浸式聲響,旨在提供更強烈的臨場感和沉浸感。

    本研究探討雙耳聲響技術結合頭部追蹤技術在VR視聽作品中的應用,並比較Ambisonics和雙聲道Stereo Sound兩種聲響效果對觀眾沉浸體驗的影響,兩者均透過雙耳聲響技術呈現。實驗設計包括實驗組和對照組,觀賞後填寫問卷並評估五種沉浸感問項。結果顯示,Ambisonics聲響效果能顯著提升觀眾的沉浸體驗。相比雙聲道音效,Ambisonics提供更準確的聲音定位,讓聽眾在虛擬環境中有如臨其境的感受。然而,若沒有透過雙耳聲響技術呈現Ambisonics聲響,就必須架設高成本和複雜的喇叭設置才能聆聽。

    創作《太陽系之旅》時,研究者使用了多種音樂創作軟體和工具,包括Cubase與多種效果器、虛擬樂器,製作沉浸式音樂和音效。研究探討了多聲道創作過程和VR視聽體驗的未來展望,認為隨技術進步和市場需求增長,沉浸式聲響技術將應用於更多領域,如影視娛樂和教育培訓等。未來研究可集中於降低成本和簡化設置,使更多用戶享受高品質沉浸式聲音體驗。

    總結而言,本研究證明了雙耳聲響技術和頭部追蹤技術能有效提升VR視聽作品的沉浸體驗。隨著技術進步,這些技術有望在更廣泛應用中發揮重要作用,提供更真實和沉浸的體驗。研究者提出了一些改進建議和未來研究方向,以推動沉浸式聲響技術的進一步發展。

    關鍵字:空間音訊、Ambisonics、雙耳聲響技術、虛擬實境


    In contemporary multimedia technology, immersive sound has become a major trend, especially in films, games, and virtual reality (VR) applications. Sound technology has evolved from traditional stereo and surround sound to immersive sound, aiming to deliver a stronger sense of presence and immersion.

    This study examines the use of Binaural Audio System combined with head-tracking technology in VR audiovisual works and compares the effects of Ambisonics and stereo sound on the audience's immersive experience, both presented through Binaural Audio System. The experimental design includes an experimental group and a control group, each consisting of 15 participants. After viewing the content, participants completed questionnaires to evaluate their sense of presence, sound immersion, emotional response, and overall sound evaluation. The results indicate that Ambisonics significantly enhances the audience's immersive experience. Compared to traditional stereo sound, Ambisonics provides more precise sound localization, making listeners feel as if they are truly in the virtual environment. However, if Ambisonics is presented through a spherical multi-channel system, its high cost and complex setup limit its widespread use.

    In creating the work "Journey to Solar System," the researcher employed various music creation software and tools, including Cubase and a range of effectors and virtual instruments, to produce immersive music and sound effects. The study explores the multi-channel creation process and the future outlook for VR audiovisual experiences. The author believed that with technological advancements and increasing market demand, immersive sound technology will be applied in more fields, such as film and television entertainment, tourism, and education. Future research should focus on reducing costs and simplifying setups, enabling more users to enjoy high-quality immersive sound experiences.

    In conclusion, this study shows that Binaural Audio System and head-tracking technology effectively enhance the immersive experience of VR audiovisual works. As technology continues to advance, these technologies are expected to play a crucial role in broader applications, providing users with more realistic and immersive experiences. The researcher also offer suggestions for improvements and future research directions to further develop immersive sound technology.

    Keywords: Spatial Sound, Ambisonics, Binaural Audio System, Virtual Reality

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xiv 第一章、緒論 1 第一節 研究背景與動機 1 第二節 研究範圍與對象 3 第三節 研究問題 3 第四節 研究流程 4 第五節 名詞解釋 5 第二章、文獻探討 8 第一節 沉浸式聲響 8 壹、名詞定義 8 貳、沉浸式聲響技術的發展 8 參、音訊處理技術 15 肆、沉浸式聲響總結 32 第二節 虛擬實境影像 34 壹、名詞定義 34 貳、虛擬實境的種類 34 參、虛擬實境互動裝置 40 肆、VR設備與3D音訊 44 第三節 雙耳聲響技術 45 壹、名詞定義 45 貳、雙耳聲響技術的實現 45 參、雙耳聲響技術的現代發展 48 第四節 QUXiVE問卷 49 壹、名詞定義 49 貳、內文摘要 50 參、QUXiVE問卷結論 53 第三章 研究設計 54 第一節 研究架構與流程 54 壹、研究架構 54 貳、研究流程 55 參、研究假設 56 第二節 研究方法與工具 57 壹、研究方法 57 貳、研究工具-軟體 58 參、研究工具-硬體 69 第三節 體驗者聆聽體驗 74 壹、沉浸式虛擬環境聲響體驗問卷 74 貳、資料分析方法 79 參、預試問卷之信度分析 80 第四章、沉浸式聲響之作品創作與聽眾感受 81 第一節 音效設計 83 壹、聲音物件與位置 83 貳、音效設計 86 第二節 音樂設計 125 壹、謝潑德音調 125 貳、創作工具 126 參、譜例與編曲分析 127 第三節 音效與音樂輸出 133 壹、Stereo Sound版本 133 貳、Ambisonics版本 137 第四節 影音合成與輸出 140 壹、Adobe Premier Pro 140 貳、影音合成流程 140 第五節 沉浸式聲響之聆聽感受 147 壹、敘述性統計 147 貳、實驗組與對照組之比較 148 第五章、研究結論與建議 151 壹、研究限制 151 貳、作品創作回顧與建議 151 參、沉浸式聲響體驗的未來展望 152 參考文獻 153 壹、中文部分 153 貳、西文部分 153 參、網路資料 155 附錄 157 附件一、沉浸式虛擬環境聲響體驗問卷 157 附件二、《太陽系之旅》音樂總譜 163 附件三、《太陽系之旅》Fliki AI旁白文字稿 173

    壹、中文部分

    林尚伯。(2021),〈音樂創作結合影像互動研究 –以聲音觸發、體感互動及空間音訊為主〉,天主教輔仁大學音樂研究所碩士論文,新北市。
    高惠宗。(1994),〈電子音樂:理論與實作〉,初版,世界文物。
    李凌子。(2019),〈《巫聲》¬¬—以《山海經》為基礎的八聲道音場創作〉,國立清華大學碩士論文,新竹市。
    陳朝欽。(2013),〈電子音樂在現代舞蹈劇場的應用-以台中極至體能舞蹈團為例〉,國立臺南藝術大學民族音樂學研究所碩士論文,台南市。
    黃國斌, &鄭建文(2020),〈應用沉浸式擴增實境音像互動於現場音樂表演之研究與創作〉,2020年第9卷第1期,p.245-255。
    Lecture notes – v0.7
    Introduction to Ambisonic
    許逸誠。(2019),〈用於語音助理之聲學信號增強與雙耳音效技術〉,國立清華大學動力機械工程學系碩士論文,新竹市。

    貳、西文部分

    Agrawal, S., Simon, A., Bech, S., Bærentsen, K., & Forchhammer, S. (2019). Defining immersion: Literature review and implications for research on immersive audiovisual experiences. Journal of Audio Engineering Society, 68(6), 404-417.
    Abbott, N. L. W. (2015). Scene Spatialisation in Object-Based Audio: An Analysis of Interchange Formats for Advanced Electroacoustic Rendering Methods. Adelaide, Australia., pp.12-36.
    Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual review of psychology, 63(1), 1-29.
    Braus, I. (1995). Retracing one's steps: An overview of pitch circularity and Shepard tones in european music, 1550–1990. Music Perception, 12(3), 323-351.
    Carbonell, C., Saorin, J. L., & Melián, D. (2021). User VR Experience and Motivation Study in an Immersive 3D Geovisualization Environment Using a Game Engine for Landscape Design Teaching. Land, 10 (5), 492., pp.7-15.
    Coleman, P., Franck, A., Francombe, J., Liu, Q., De Campos, T., Hughes, R. J., ... & Hilton, A. (2018). An audio-visual system for object-based audio: from recording to listening. IEEE Transactions on Multimedia, 20(8), 1919-1931.
    David, S. (2001). Sound Design: The Expressive Power of Music, Voice and Sound Effects in Cinema. Studio City:[sn].
    Floros, A., & Tsakostas, C. (2007, May). Optimized Binaural Modeling for Immersive Audio Applications. In Audio Engineering Society Convention 122. Audio Engineering Society. pp.125–128
    Guastavino, C., Larcher, V., Catusseau, G., & Boussard, P. (2007). Spatial audio quality evaluation: comparing transaural, ambisonics and stereo. Georgia Institute of Technology.
    John, S., Ederyn, W., Bruce, C. (1978, January). The Social Psychology of Telecommunications., Vol. 7, No. 1., pp. 32-33.
    Kolarik, A. J., Moore, B. C., Zahorik, P., Cirstea, S., & Pardhan, S. (2016). Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics, 78, 373-395.
    Lee, H. (2020). A conceptual model of immersive experience in extended reality.
    McMahan, A. (2003). Immersion, engagement, and presence: A method for analyzing 3-d video games. In: Wolf, M. J. P. and Perron, B. (Eds). The video game theory reader. January 2003. 1st ed. Routledge. pp.67–86.
    McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world. Penguin.
    Murphy, D., & Skarbez, R. (2020). What do we mean when we say “presence”?. PRESENCE: Virtual and Augmented Reality, 29, 171-190.
    Murray, L. (2019). Sound design theory and practice: Working with sound. Routledge.
    Neelakantam, S., & Pant, T. (2017). Learning web-based virtual reality: build and deploy web-based virtual reality technology. Apress.
    Oh, C. S., Bailenson, J. N., & Welch, G. F. (2018). A systematic review of social presence: Definition, antecedents, and implications. Frontiers in Robotics and AI, 5, 409295.
    Quackenbush, S. R., & Herre, J. (2021). MPEG standards for compressed representation of immersive audio. Proceedings of the IEEE, 109(9), 1578-1589.
    Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation psychology, 46(3), 296., pp. 46.
    Stramba-Badiale, C., Tuena, C., Goulene, K. M., Cipresso, P., Morelli, S., Rossi, M., ... & Riva, G. (2024). Enhancing spatial navigation skills in mild cognitive impairment patients: a usability study of a new version of ANTaging software. Frontiers in Human Neuroscience, 17, 1310375.
    Sheridan, T. B. (1992). Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ., 1(1), 120-125.
    Slater, M., Usoh, M., & Steed, A. (1994). Depth of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 3(2), 130-144.
    Tcha-Tokey, K., Loup-Escande, E., Christmann, O., & Richir, S. A Questionnaire to Measure the User Experience in Immersive Virtual Environments. pp. 1-5.
    Turner, D., Murphy, D., Pike, C., & Baume, C. (2021). Spatial audio production for immersive media experiences: Perspectives on practice-led approaches to designing immersive audio content. The Soundtrack, 13(1), 73-94.
    Ventura, S., Brivio, E., Riva, G., & Baños, R. M. (2019). Immersive versus non-immersive experience: Exploring the feasibility of memory assessment through 360 technology. Frontiers in psychology, 10, 2509., pp. 1-6.
    Valentin, S., Pascal, K., Nico, H., Niels, H. (2019, May). Using Presence Questionnaires in Virtual Reality, pp. 8-10.
    Whitford, S. (2021). The ‘Truth of Sound’: Exploring the effects of an immersive location sound recording methodology within realist filmmaking. The Soundtrack, 13(1), 61-71.
    Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7 (3)., pp.225-240.
    Wirth, W., Hartmann, T., Böcking, S., Vorderer, P., Klimmt, C., Schramm, H., ... & Jäncke, P. (2007). A process model of the formation of spatial presence experiences. Media psychology, 9(3), 493-525.

    參、網路資料

    Sz,“VR虛擬實境之聲音—淺談Spatial audio、Ambisonic等聲音處理技術”,2019。〈https://digilog.tw/posts/1188〉
    David, M. (2015, November). “Audio Definition Model Software”, BBC Research Development.
    〈https://www.bbc.co.uk/rd/publications/audio-definition-model-software?〉
    Sreejesh, N. (2021, August). “Dolby Atmos Music – After the Mix”, Avid Resource Center.
    〈https://www.avid.com/zh/resource-center/encoding-and-delivering-dolby-atmos-music〉
    Weisstein, Eric W. "Spherical Harmonic." From MathWorld - A Wolfram Web
    Resource.
    〈https://mathworld.wolfram.com/SphericalHarmonic.html〉
    In-phase Audio,. Binaural Audio System,2018。
    〈https://medium.com/in-phase-audio/3d-聲效與虛擬實景-vr-4-3475c041f67a〉
    Hugh, R. (2001, October). " Surround Sound Explained: Part 3.", SOS Sound on sound.
    〈https://www.soundonsound.com/techniques/surround-sound-explained〉
    Hood, V., Knapp, M. and Griliopoulos, D. (2021). " Best VR games 2021: The top virtual reality games to play right now ".
    〈https://www.techradar.com/uk/best/the-best-vrgames〉

    QR CODE