簡易檢索 / 詳目顯示

研究生: 張維中
Chang, Wei-Chung
論文名稱: 紅磷奈米結構做為鋰、鈉、鉀離子電池的負極
Red phosphorus nanostructures as Li-, Na-, K-ion battery anodes
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 周更生
Chou, Kan-Sen
曾院介
Tseng, Yuan-Chieh
張恕豪
Chang, Shu-Hao
李國安
Li, Guo-An
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 98
中文關鍵詞: 紅磷鋰離子電池鈉離子電池鉀離子電池溶液化學法合成奈米材料負極材料
外文關鍵詞: Red phosphorus, Lithium-ion battery, Sodium-ion battery, Potassium-ion battery, Chemical solution synthesis, Nanomaterial, Anode material
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紅磷當作負極時,在鋰離子電池(2596 mA h g-1)、鈉離子電池(2596 mA h g-1)、鉀離子電池(865~2596 mA h g-1),同時具有很高的比電容量,是下個世代相當具有潛力的負極材料。在所有磷的同素異形體中,紅磷是化學性質最穩定、成本最低且最易製造的材料。然而,紅磷的導電性非常差,且在與鹼金屬形成合金MxP(M = Li、Na、K)的過程中,會造成非常大的體積膨脹,致使其電容量在充放電的循環過程中會快速衰退。為了解決這個問題,大部分的團隊致力於開發磷-碳的複合物。雖然可用於鋰離子電池的紅磷負極已經被開發出來,但全部都是以磷-碳複合物的形式存在,包括了磷-石墨烯、磷-石墨、磷-奈米碳管、磷-碳黑,來改善紅磷的低導電性與體積膨脹的問題。在這個工作中,我們提出了經由三碘化磷、乙二醇、溴化十六烷基三甲銨,在大氣中反應來形成100~200奈米的紅磷奈米粒子的大量合成方法。不同於原本商用紅磷的低導電性(電導率 < 10 -12 S m-1),奈米紅磷粒子的電導率介於2.62*10-3 S m-1 和 1.81*10-2 S m-1之間,其電導率已大幅提升至接近於半導體的鍺,並且是矽的100倍。我們推測在紅磷中發現了3~5%的碘摻雜可能是大幅提升紅磷導電性的關鍵。奈米紅磷粒子的導電性的提升與其均一的粒徑,使奈米紅磷粒子可以單獨做為鋰離子和鈉離子電極的活性材料來使用。
    儘管紅磷已經被證實可以通過形成P-C複合材料,作為高電容量的鋰離子電池與鈉離子電池的負極使用,但如何使紅磷與鉀離子反應,作為鉀離子電池的負極,仍是未知的。在這個工作中,我們提出了具有高性能的紅磷鉀離子電池負極。我們發現了可以促進鉀離子與紅磷反應的兩個關鍵因素。(1) 形成奈米級的紅磷顆粒,並使其均勻的分散在由多壁奈米碳管(MWCNTs)與科琴黑(Ketjen black, KB)建構而成具有堅韌的骨架與供電子傳遞的導電網中。(2) 在製作RP-C 複合材料的過程中,不要形成任何的P-C鍵結,可以使鉀離子更有效地進入紅磷裡。


    Red Phosphorus (RP) possessing the high specific capacity for Lithium ion batteries (LIBs, 2596 mA h g-1), Sodium ion batteries (SIBs, 2596 mA h g-1) and Potassium ion batteries (PIBs, 865~2596 mA h g-1) is a promising anode material for next generation sustainable battery system. Among all the P allotropes, RP is the most chemical stable, low cost and simply fabricating material. However, RP has the problems of poor conductivity and large volume expansion occurring from P to MxP (M= Li, Na, K), causing rapid capacity fading during the cycling process. To address these issues, most of the groups have devoted to develop P-carbon composites. Although RP-based anodes for lithium-ion batteries have been reported, they were all in the form of carbon-P composites, including P-graphene, P-graphite, P-CNTs and P-carbon black, in order to improve P’s extremely low conductivity and large volume change during cycling process. Here we report the large-scale synthesis of red phosphorus nanoparticles (RPNPs) with sizes ranging from 100 to 200 nm by reacting PI3 with ethylene glycol in the presence of cetyltrimethylammonium bromide (CTAB) in ambient environment. Unlike the insulator behavior of commercial RP (conductivity < 10 -12 S m-1), the conductivity of RPNPs is between 2.62*10-3 S m-1 and 1.81*10-2 S m-1, which is close to that of semiconductor germanium (1.02*10-2 S m-1), and two orders of magnitudes higher than silicon (5.35*10-4 S m-1). Around 3~5 wt% of iodine-doping was found in RPNPs, which was speculated the key to significantly improve the conductivity of RPNPs. The significantly improved conductivity of RPNPs and their uniform colloidal nanostructures enable them solely used as active materials for LIBs and SIBs anodes.
    Although RP have been demonstrated that could be a high capacity (>2000 mA h g-1) LIBs and SIBs anode through the formation of P-C composites, however, how to activate it to act as a PIB anode is yet unknown. Here, we report high-performance RP potassium-ion battery anodes. Two key factors were found to facilitate RP react with K-ions reversibly: (i) Nanoscale RP particles are dispersed evenly in a conductive carbon matrix comprising multi-wall carbon nanotubes (MWCNTs) and Ketjen black (KB) that provide a tough scaffold and an efficient electrical pathway. (ii) P-C bonds are not formed in RP/C composites during the milling process to make K ions access into RP more effectively.

    List of tables 8 List of figures 9 Chapter 1 : Introduction 15 1.1 Li-, Na-, K-ion batteries for energy storage 15 1.2 Red phosphorus anodes : potential and challenges 17 Chapter 2 : Solution synthesis of iodine-doped red phosphorus for LIBs and SIBs 20 2.1 Introduction 20 2.2 Experimental section 21 2.2.1 Materials 21 2.2.2 Red phosphorus nanoparticles synthesis 21 2.2.3 Synthesis of Na2/3Ni1/3Mn2/3O2 21 2.2.4 Characterization 22 2.2.5 Electrochemical characterization 23 2.3 Results and discussion 25 2.3.1 Synthesis of red phosphorus nanoparticles 25 2.3.2 Analysis of red phosphorus nanoparticles 28 2.3.3 Electrochemical performance of RPNPs Lithium half-cells 33 2.3.4 RPNPs as Li-ion full-cell anodes 43 2.3.5 Optimization of electrolyte for SIBs 47 2.3.6 Electrochemical performance of RPNPs sodium half-cells. 49 2.3.7 RPNPs as Na-ion full-cell anodes 51 2.4 Conclusion 52 Chapter 3 : Red phosphorus as a high performance PIB anode 54 3.1 Introduction 54 3.2 Experimental section 58 3.2.1 Materials 58 3.2.2 Fabrication of RP/C electrode 58 3.2.3 Synthesis of KMnHCF 59 3.2.4 Preparation of KMnHCF electrode 59 3.2.5 Characterization 59 3.2.6 Electrochemical characterization 60 3.3 Results and discussion 62 3.3.1 Analysis of RP/C electrode 62 3.3.2 Electrochemical performance 64 3.3.3 Analysis of XPS 71 3.3.4 Full-cell 74 3.4 Conclusion 88 Reference 89

    (1) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114 (23), 11636-11682.
    (2) Kim, Y.; Ha, K.-H.; Oh, S. M.; Lee, K. T., High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry – A European Journal 2014, 20 (38), 11980-11992.
    (3) Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6 (7), 2067-2081.
    (4) Barpanda, P.; Oyama, G.; Nishimura, S.-i.; Chung, S.-C.; Yamada, A., A 3.8-V earth-abundant sodium battery electrode. Nat Commun 2014, 5.
    (5) Janek, J.; Zeier, W. G., A solid future for battery development. Nat. Energy 2016, 1, 16141.
    (6) Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4 (1), 56-72.
    (7) Sun, Y.; Liu, N.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
    (8) Bogart, T. D.; Chockla, A. M.; Korgel, B. A., High capacity lithium ion battery anodes of silicon and germanium. Curr. Opin. Chem. Eng. 2013, 2 (3), 286-293.
    (9) Wu, S.; Han, C.; Iocozzia, J.; Lu, M.; Ge, R.; Xu, R.; Lin, Z., Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed. 2016, 55 (28), 7898-7922.
    (10) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7 (5), 310-315.
    (11) Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O’Dwyer, C.; Ryan, K. M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Lett. 2014, 14 (2), 716-723.
    (12) Bogart, T. D.; Oka, D.; Lu, X.; Gu, M.; Wang, C.; Korgel, B. A., Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin. ACS Nano 2014, 8 (1), 915-922.
    (13) Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech 2014, 9 (3), 187-192.
    (14) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012, 12 (6), 3315-3321.
    (15) Ngo, D. T.; Le, H. T. T.; Kim, C.; Lee, J.-Y.; Fisher, J. G.; Kim, I.-D.; Park, C.-J., Mass-scalable synthesis of 3D porous germanium-carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 2015, 8 (12), 3577-3588.
    (16) Kang, D.-Y.; Kim, C.; Gueon, D.; Park, G.; Kim, J. S.; Lee, J. K.; Moon, J. H., 3D Woven-Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithium-Ion Batteries. ChemSusChem 2015, 8 (20), 3414-3418.
    (17) Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chem. Mater. 2014, 26 (6), 2172-2179.
    (18) Park, C. M.; Sohn, H. J., Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Adv. Mater. 2007, 19 (18), 2465-2468.
    (19) Liu, H.; Du, Y.; Deng, Y.; Ye, P. D., Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44 (9), 2732-2743.
    (20) Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48 (71), 8931-8933.
    (21) Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y., Formation of Stable Phosphorus–Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle–Graphite Composite Battery Anodes. Nano Lett. 2014, 14 (8), 4573-4580.
    (22) Extance, P.; Elliott, S. R., Pressure dependence of the electrical conductivity of amorphous red phosphorus. Philos. Mag. B 1981, 43 (3), 469-483.
    (23) Bai, A.; Wang, L.; Li, J.; He, X.; Wang, J.; Wang, J., Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100-104.
    (24) Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P-C). J. Mater. Chem. A 2016, 4 (2), 505-511.
    (25) Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M., Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3 (10), 5572-5584.
    (26) Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T., An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Adv. Mater. 2013, 25 (22), 3045-3049.
    (27) Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H., High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. Int. Ed. 2013, 52 (17), 4633-4636.
    (28) Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C., Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries. Angew. Chem. Int. Ed. 2012, 51 (36), 9034-9037.
    (29) Li, W.; Yang, Z.; Li, M.; Jiang, Y.; Wei, X.; Zhong, X.; Gu, L.; Yu, Y., Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Lett. 2016, 16 (3), 1546-1553.
    (30) Li, W.; Yang, Z.; Li, M.; Jiang, Y.; Wei, X.; Zhong, X.; Gu, L.; Yu, Y., Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Lett. 2016.
    (31) Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Lett. 2013, 13 (11), 5480-5484.
    (32) Yu, Z.; Song, J.; Gordin, M. L.; Yi, R.; Tang, D.; Wang, D., Phosphorus-Graphene Nanosheet Hybrids as Lithium-Ion Anode with Exceptional High-Temperature Cycling Stability. Adv. Sci. 2015, 2 (1-2), 1400020.
    (33) Zhang, C.; Wang, X.; Liang, Q.; Liu, X.; Weng, Q.; Liu, J.; Yang, Y.; Dai, Z.; Ding, K.; Bando, Y.; Tang, J.; Golberg, D., Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. Nano Lett. 2016, 16 (3), 2054-2060.
    (34) Song, J.; Yu, Z.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D.; Walter, T.; Regula, M.; Choi, D.; Li, X.; Manivannan, A.; Wang, D., Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries. Nano Lett. 2014, 14 (11), 6329-6335.
    (35) Gao, H.; Zhou, T.; Zheng, Y.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z., Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor-Redistribution for High-Energy Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6 (21), 1601037.
    (36) Zhang, Y.; Rui, X.; Tang, Y.; Liu, Y.; Wei, J.; Chen, S.; Leow, W. R.; Li, W.; Liu, Y.; Deng, J.; Ma, B.; Yan, Q.; Chen, X., Wet-Chemical Processing of Phosphorus Composite Nanosheets for High-Rate and High-Capacity Lithium-Ion Batteries. Adv. Energy Mater. 2016, 6 (10), 1502409.
    (37) Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 2013, 238, 123-136.
    (38) Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116 (34), 18079-18086.
    (39) Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K., Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562.
    (40) Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W., Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite. J. Power Sources 2016, 303, 150-158.
    (41) Youn, D. H.; Patterson, N. A.; Park, H.; Heller, A.; Mullins, C. B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces 2016, 8 (41), 27788-27794.
    (42) Oh, M.; Na, S.; Woo, C.-S.; Jeong, J.-H.; Kim, S.-S.; Bachmatiuk, A.; Rümmeli, M. H.; Hyun, S.; Lee, H.-J., Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501136.
    (43) Madan, R. L., S.Chand Success Guide in Organic Chemistry, S. Chand Limited, 2005.
    (44) Mittal, A., Objective Chemistry For Iit Entrance, New Age International Publishers, 2002.
    (45) MEHTA, B.; MEHTA, M., ORGANIC CHEMISTRY, PHI Learning, 2005.
    (46) Qi, W. H.; Wang, M. P., Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 2004, 88 (2–3), 280-284.
    (47) Zeng, X.-R.; Ko, T.-M., Structure–conductivity relationships of iodine-doped polyaniline. J. Polym. Sci., Part B: Polym. Phys. 1997, 35 (13), 1993-2001.
    (48) Yao, Z.; Nie, H.; Yang, Z.; Zhou, X.; Liu, Z.; Huang, S., Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 2012, 48 (7), 1027-1029.
    (49) Serway, R. A.; Jewett, J. W., Physics for Scientists and Engineers with Modern Physics, 9th ed.; Cengage Learning, 2013.
    (50) Jiang, Z.; Sen, A., Iodine-doped poly(ethylenepyrrolediyl) derivatives: a new class of nonconjugated conducting polymers. Macromolecules 1992, 25 (2), 880-882.
    (51) Yang, T.; Wang, H.; Ou, X.-M.; Lee, C.-S.; Zhang, X.-H., Iodine-Doped-Poly(3,4-Ethylenedioxythiophene)-Modified Si Nanowire 1D Core-Shell Arrays as an Efficient Photocatalyst for Solar Hydrogen Generation. Adv. Mater. 2012, 24 (46), 6199-6203.
    (52) Zhao, Y.; Wei, J.; Vajtai, R.; Ajayan, P. M.; Barrera, E. V., Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 2011, 1, 83.
    (53) Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E.; Fairchild, S. B.; Ferguson, J. B.; Maruyama, B.; Kono, J.; Talmon, Y.; Cohen, Y.; Otto, M. J.; Pasquali, M., Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity. Science 2013, 339 (6116), 182-186.
    (54) Zhan, Y.; Zhang, B.; Cao, L.; Wu, X.; Lin, Z.; Yu, X.; Zhang, X.; Zeng, D.; Xie, F.; Zhang, W.; Chen, J.; Meng, H., Iodine doped graphene as anode material for lithium ion battery. Carbon 2015, 94, 1-8.
    (55) Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48 (15), 4466-4474.
    (56) Jaiswal, M.; Menon, R., Polymer electronic materials: a review of charge transport. Polym. Int. 2006, 55 (12), 1371-1384.
    (57) Lee, R. S.; Kim, H. J.; Fischer, J. E.; Thess, A.; Smalley, R. E., Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997, 388 (6639), 255-257.
    (58) Davis, J. R., Concise Metals Engineering Data Book, A S M International, 1997.
    (59) Toy, A. D. F., The Chemistry of Phosphorus: Pergamon Texts in Inorganic Chemistry, Elsevier Science, 2013.
    (60) Yuan, D.; Cheng, J.; Qu, G.; Li, X.; Ni, W.; Wang, B.; Liu, H., Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131-137.
    (61) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4 (5), 366-377.
    (62) Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433.
    (63) Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531.
    (64) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Mater. Today 2015, 18 (5), 252-264.
    (65) Liu, Y.; Zhou, G.; Liu, K.; Cui, Y., Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Acc. Chem. Res. 2017, 50 (12), 2895-2905.
    (66) Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium‐Ion Batteries. Adv. Mater. 2018, (0), 1800561.
    (67) C., P. J.; Divya, S.; Damian, G.; Neeraj, S., An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries. Adv. Energy Mater. 2017, 7 (24), 1602911.
    (68) Kumar, N. P.; Liangtao, Y.; Wolfgang, B.; Philipp, A., From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57 (1), 102-120.
    (69) Irin, S.; Mokhlesur, R. M.; Ying, C.; M., G. A., Potassium‐Ion Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism. Adv. Funct. Mater. 2018, 28 (5), 1703857.
    (70) Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z., Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J. Am. Chem. Soc. 2017, 139 (9), 3316-3319.
    (71) Kei, K.; Mouad, D.; Tomooki, H.; Shinichi, K.; Shinichi, K., Towards K‐Ion and Na‐Ion Batteries as “Beyond Li‐Ion”. The Chemical Record 2018, 18 (4), 459-479.
    (72) Vaalma, C.; Buchholz, D.; Passerini, S., Non-aqueous potassium-ion batteries: a review. Current Opinion in Electrochemistry 2018.
    (73) Wu, X.; Leonard, D. P.; Ji, X., Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater. 2017, 29 (12), 5031-5042.
    (74) Xue, L.; Li, Y.; Gao, H.; Zhou, W.; Lü, X.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B., Low-Cost High-Energy Potassium Cathode. J. Am. Chem. Soc. 2017, 139 (6), 2164-2167.
    (75) Chenglin, Z.; Yang, X.; Min, Z.; Liying, L.; Huishuang, D.; Minghong, W.; Yi, Y.; Yong, L., Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries. Adv. Funct. Mater. 2017, 27 (4), 1604307.
    (76) Han, J.; Li, G.-N.; Liu, F.; Wang, M.; Zhang, Y.; Hu, L.; Dai, C.; Xu, M., Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53 (11), 1805-1808.
    (77) Bie, X.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S., A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 2017, 5 (9), 4325-4330.
    (78) Sultana, I.; Rahman, M. M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M., High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5 (45), 23506-23512.
    (79) Xue, Q.; Li, D.; Huang, Y.; Zhang, X.; Ye, Y.; Fan, E.; Li, L.; Wu, F.; Chen, R., Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. J. Mater. Chem. A 2018.
    (80) Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S.; Yang, H., Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High‐Performance Potassium‐Ion Batteries. Adv. Energy Mater. 2018, 0 (0), 1800171.
    (81) Bin, D.-S.; Lin, X.-J.; Sun, Y.-G.; Xu, Y.-S.; Zhang, K.; Cao, A.-M.; Wan, L.-J., Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode. J. Am. Chem. Soc. 2018, 140 (23), 7127-7134.
    (82) Xu, Y.; Zhang, C.; Zhou, M.; Fu, Q.; Zhao, C.; Wu, M.; Lei, Y., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications 2018, 9 (1), 1720.
    (83) Gao, H.; Zhou, T.; Zheng, Y.; Zhang, Q.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z., CoS Quantum Dot Nanoclusters for High‐Energy Potassium‐Ion Batteries. Adv. Funct. Mater. 2017, 27 (43), 1702634.
    (84) Jian, Z.; Hwang, S.; Li, Z.; Hernandez Alexandre, S.; Wang, X.; Xing, Z.; Su, D.; Ji, X., Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries. Adv. Funct. Mater. 2017, 27 (26), 1700324.
    (85) Wu, X.; Zhao, W.; Wang, H.; Qi, X.; Xing, Z.; Zhuang, Q.; Ju, Z., Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 2018, 378, 460-467.
    (86) Zhang, W.; Pang, W. K.; Sencadas, V.; Guo, Z., Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule 2018.
    (87) McCulloch, W. D.; Ren, X.; Yu, M.; Huang, Z.; Wu, Y., Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. ACS Applied Materials & Interfaces 2015, 7 (47), 26158-26166.
    (88) Wang, H.; Wu, X.; Qi, X.; Zhao, W.; Ju, Z., Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32-37.
    (89) Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H., High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. 2013, 125 (17), 4731-4734.
    (90) Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10 (11), 980-985.
    (91) Sun, J.; Lee, H.-W.; Pasta, M.; Sun, Y.; Liu, W.; Li, Y.; Lee, H. R.; Liu, N.; Cui, Y., Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Materials 2016, 4, 130-136.
    (92) Liu, Y.; Zhang, A.; Shen, C.; Liu, Q.; Cao, X.; Ma, Y.; Chen, L.; Lau, C.; Chen, T.-C.; Wei, F.; Zhou, C., Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano 2017, 11 (6), 5530-5537.
    (93) Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17 (2), 1240-1247.
    (94) Zhou, J.; Liu, X.; Cai, W.; Zhu, Y.; Liang, J.; Zhang, K.; Lan, Y.; Jiang, Z.; Wang, G.; Qian, Y., Wet-Chemical Synthesis of Hollow Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries. Adv. Mater. 2017, 29 (29), 1700214-n/a.
    (95) Liu, S.; Feng, J.; Bian, X.; Liu, J.; Xu, H.; An, Y., A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10 (5), 1222-1233.
    (96) Liu, S.; Xu, H.; Bian, X.; Feng, J.; Liu, J.; Yang, Y.; Yuan, C.; An, Y.; Fan, R.; Ci, L., Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. ACS Nano 2018.
    (97) Qian, X.; Jin, L.; Zhao, D.; Yang, X.; Wang, S.; Shen, X.; Rao, D.; Yao, S.; Zhou, Y.; Xi, X., Ketjen Black-MnO Composite Coated Separator For High Performance Rechargeable Lithium-Sulfur Battery. Electrochim. Acta 2016, 192, 346-356.
    (98) Ren, X.; Zhang, S. S.; Tran, D. T.; Read, J., Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater. Chem. 2011, 21 (27), 10118-10125.
    (99) Xu, G.-L.; Chen, Z.; Zhong, G.-M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X.-H.; Zhang, X.; Amine, K., Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Lett. 2016, 16 (6), 3955-3965.
    (100) McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A., Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 2014, 7 (1), 416-426.
    (101) Yamada, Y.; Chiang Ching, H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A., Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694.
    (102) Ma, G.; Huang, K.; Ma, J.-S.; Ju, Z.; Xing, Z.; Zhuang, Q.-c., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 2017, 5 (17), 7854-7861.
    (103) Lee, G.-H.; Lee, S.; Lee, C. W.; Choi, C.; Kim, D.-W., Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li ion microbatteries. J. Mater. Chem. A 2016, 4 (3), 1060-1067.
    (104) Chen, C.; Wang, Z.; Zhang, B.; Miao, L.; Cai, J.; Peng, L.; Huang, Y.; Jiang, J.; Huang, Y.; Zhang, L.; Xie, J., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Materials 2017, 8, 161-168.
    (105) Tai, Z.; Zhang, Q.; Liu, Y.; Liu, H.; Dou, S., Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54-61.
    (106) Jian, Z.; Luo, W.; Ji, X., Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137 (36), 11566-11569.
    (107) Qi, X.; Huang, K.; Wu, X.; Zhao, W.; Wang, H.; Zhuang, Q.; Ju, Z., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 2018, 131, 79-85.
    (108) Bai, J.; Xi, B.; Mao, H.; Lin, Y.; Ma, X.; Feng, J.; Xiong, S., One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage. Adv. Mater. 2018, 1802310.
    (109) Xie, Y.; Chen, Y.; Liu, L.; Tao, P.; Fan, M.; Xu, N.; Shen, X.; Yan, C., Ultra‐High Pyridinic N‐Doped Porous Carbon Monolith Enabling High‐Capacity K‐Ion Battery Anodes for Both Half‐Cell and Full‐Cell Applications. Adv. Mater. 2017, 29 (35), 1702268.
    (110) Kaixiang, L.; Chenchen, W.; Luojia, L.; Yuwen, L.; Chaonan, M.; Fujun, L.; Jun, C., A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. Angew. Chem. 2018, 130 (17), 4777-4781.
    (111) Huang, K.; Xing, Z.; Wang, L.; Wu, X.; Zhao, W.; Qi, X.; Wang, H.; Ju, Z., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6 (2), 434-442.

    QR CODE