簡易檢索 / 詳目顯示

研究生: 鄭主佑
Cheng, Chu-Yu
論文名稱: 神經元模型之觸發頻率函數與其曲線對於弦波型電流輸入間的相位偏移現象
Firing Rate Functions and Their Curves in Neuron Models: Phase Shift Phenomena under Sinusoidal Current Inputs
指導教授: 呂忠津
Lu, Chung-Chin
口試委員: 林茂昭
蘇育德
楊谷章
馬席彬
陳博現
劉奕汶
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 110
中文關鍵詞: 平衡背景雜訊神經訊號觸發間隔觸發頻率函數神經元模型相位偏移靈敏度分數
外文關鍵詞: balanced background noise, integrate-and-fire models, interspike-interval firing rate, neuron models, phase shift, agility score
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重探討頻率編碼中的常用的分析工具——觸發頻率函數(firing rate function)。我們採用平衡背景雜訊的 Leaky Integrate-and Fire(BLIF)神經元模型,來模擬生物神經元在自然生物體內環境中的行為,並研究週期性輸入信號對於觸發頻率的影響。我們提出假設以解釋觸發頻率相位偏移現象的機制,並透過系統性模擬,來探討輸入頻率與背景雜訊的調控對此現象的影響。本研究中提出了創新的神經元靈敏度分數(AG score)概念,並提供數種神經元模型的對應計分公式,為各種神經元模型間之互相比較提供量化依據;靈敏度分數也能夠作為神經網路建構時,欲替換不同類型神經元的參考。除此之外,本文還分析了 Izhikevich 神經元模型的動態特性,將其微分方程描述為速度向量場,並且依此推導出對應的 Hamiltonian 能量函數以研究神經訊號觸發間隔(ISI)之觸發頻率。研究發現在平衡背景雜訊的 Izhikevich 神經元模型中,ISI 觸發頻率曲線出現相位提前現象,顯示輸出信號領先於輸入信號,為相位偏移的機制提供了新的見解。本研究結果為觸發頻率函數的應用提供了新啟示,並
    揭示了背景雜訊與輸入頻率在神經元編碼機制調控中的關鍵作用。


    This study focuses on the analysis of firing rate function, a commonly used tool in rate coding research. Using the Balanced Leaky Integrate-and-Fire (BLIF) model, we simulated the behavior of biological neurons in vivo and investigated the effects of periodic input signals on firing rates. Hypotheses were proposed to explain the mechanisms underlying phase shifts in firing rates, and systematic simulations were conducted to explore the influence of input frequency and background noise regulation on this phenomenon. In this study we introduce the innovative concept of the agility score (AG score) for a neuron model and provide corresponding scoring equations for several neuron models, offering a quantitative basis for comparisons among various neuron models. The AG score can also serve as a reference for substituting different types of neurons during the construction of neural networks. Additionally, the dynamic properties of the Izhikevich model were analyzed by representing its differential equations as a velocity field. The associated Hamiltonian energy function was derived to study the interspike interval (ISI) firing rate. A phase advance phenomenon was observed in the ISI firing rate curve of a balanced Izhikevich neuron model, where the output signal leads the input signal, providing new insights into the mechanisms of phase shifts. These findings contribute to a deeper understanding of
    firing rate function applications and highlight the critical roles of background noise and input frequency in regulating neuronal coding mechanisms.

    Contents List of Figures 3 1 Introduction 11 2 Tuning the Neuron Model 14 2.1 The BLIF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Establishing a BLIF Model . . . . . . . . . . . . . . . . . . . 15 2.1.2 Simulating Time Resolution . . . . . . . . . . . . . . . . . . 16 2.2 Configuring Input Signals . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Adjusting Sinusoidal Current Injection . . . . . . . . . . . . 18 2.2.2 Background Noise Tuning . . . . . . . . . . . . . . . . . . . 19 2.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . 21 2.3.1 The Phase Shift Phenomenon in risi–t Plots . . . . . . . . . . 21 2.3.2 Evaluating Different Background Noise Templates . . . . . . 23 3 The Agility Measure for a Neuron Model 58 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 The BLIF Model . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 ISI Firing Rate Function for LIF Model . . . . . . . . . . . . 63 3.2.3 ISI Firing Rate Function for BLIF Model . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 The Angle of Phase Shift . . . . . . . . . . . . . . . . . . . . 70 3.3.2 The Agility Score of a Neuron . . . . . . . . . . . . . . . . . 72 3.3.3 Agility Scores across Different Neuron Models . . . . . . . . 73 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Deriving Firing Rate Function for the Izhikevich Neuron Model 78 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.1 The Balanced Izhikevich Model . . . . . . . . . . . . . . . . 81 4.2.2 Hamiltonian Energy Function for Balanced Izhikevich Model 84 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.1 ISI Firing Rate Function for Steady State . . . . . . . . . . . 86 4.3.2 The γ-γ′ Phase Plane . . . . . . . . . . . . . . . . . . . . . . 88 4.3.3 ISI Firing Rate Function for Transient State . . . . . . . . . . 89 4.3.4 The Phase Advance Phenomenon . . . . . . . . . . . . . . . 92 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 Conclusion and Future Work 100 6 Bibliography 103

    [1] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),” Brain research bulletin, vol. 50, no. 5-6, pp. 303–304, 1999.
    [2] C. Koch and I. Segev, Methods in neuronal modeling: from ions to networks. MIT press, 1998.
    [3] T. W. Troyer and K. D. Miller, “Physiological gain leads to high isi variability in a simple model of a cortical regular spiking cell,” Neural Computation, vol. 9, no. 5, pp. 971–983, 1997.
    [4] N. Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons,” Journal of computational neuroscience, vol. 8, pp. 183–208, 2000.
    [5] R. Rubin, L. Abbott, and H. Sompolinsky, “Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity,” Proceedings of the National Academy of Sciences, vol. 114, no. 44, pp. E9366–E9375, 2017.
    [6] A. Riehle, S. Grun, M. Diesmann, and A. Aertsen, “Spike synchronization and rate modulation differentially involved in motor cortical function,” Science, vol. 278, no. 5345, pp. 1950–1953, 1997.
    [7] M. N. Shadlen andW. T. Newsome, “The variable discharge of cortical neurons: implications for connectivity, computation, and information coding,” Journal of neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998.
    [8] D. Mar, C. Chow, W. Gerstner, R. Adams, and J. Collins, “Noise shaping in populations of coupled model neurons,” Proceedings of the National Academy of Sciences, vol. 96, no. 18, pp. 10 450–10 455, 1999.
    [9] C. M. Gray, P. K¨onig, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, vol. 338, no. 6213, pp. 334–337, 1989.
    [10] E. Vaadia, I. Haalman, M. Abeles, H. Bergman, Y. Prut, H. Slovin, and A. Aertsen, “Dynamics of neuronal interactions in monkey cortex in relation to behavioural events,” Nature, vol. 373, no. 6514, pp. 515–518, 1995.
    [11] P. N. Steinmetz, A. Roy, P. Fitzgerald, S. Hsiao, K. Johnson, and E. Niebur, “Attention modulates synchronized neuronal firing in primate somatosensory cortex,” Nature, vol. 404, no. 6774, pp. 187–190, 2000.
    [12] S. C. de Oliveira, A. Thiele, and K.-P. Hoffmann, “Synchronization of neuronal activity during stimulus expectation in a direction discrimination task,” Journal of Neuroscience, vol. 17, no. 23, pp. 9248–9260, 1997.
    [13] M. Abeles, “Corticonics. cambridge,” England: Cambrdige University, 1991.
    [14] M. E. Mazurek and M. N. Shadlen, “Limits to the temporal fidelity of cortical spike rate signals,” Nature neuroscience, vol. 5, no. 5, pp. 463–471, 2002.
    [15] M. Carandini, F. Mechler, C. S. Leonard, and J. A. Movshon, “Spike train encoding by regular-spiking cells of the visual cortex,” Journal of neurophysiology, vol. 76, no. 5, pp. 3425–3441, 1996.
    [16] N. Masuda and K. Aihara, “Duality of rate coding and temporal coding in multilayered feedforward networks,” Neural Computation, vol. 15, no. 1, pp. 103– 125, 2003.
    [17] G. Ariav, A. Polsky, and J. Schiller, “Submillisecond precision of the inputoutput transformation function mediated by fast sodium dendritic spikes in basal dendrites of ca1 pyramidal neurons,” Journal of Neuroscience, vol. 23, no. 21, pp. 7750–7758, 2003.
    [18] A. N. Burkitt, H. Meffin, and D. B. Grayden, “Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input,” Biological Cybernetics, vol. 89, no. 2, pp. 119–125, 2003.
    [19] H. K¨ondgen, C. Geisler, S. Fusi, X.-J. Wang, H.-R. L¨uscher, and M. Giugliano, “The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro,” Cerebral cortex, vol. 18, no. 9, pp. 2086–2097, 2008.
    [20] F. S. Chance, Modeling cortical dynamics and the responses of neurons in the primary visual cortex [Ph.D. dissertation]. Brandeis University, 2000.
    [21] P. Dayan, L. F. Abbott, and L. Abbott, Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT press Cambridge, MA, 2001.
    [22] B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes, “Phase-response curves give the responses of neurons to transient inputs,” Journal of neurophysiology, vol. 94, no. 2, pp. 1623–1635, 2005.
    [23] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.
    [24] R. Moreno-Bote and N. Parga, “Simple model neurons with ampa and nmda filters: role of synaptic time scales,” Neurocomputing, vol. 65, pp. 441–448, 2005.
    [25] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4, p. 500, 1952.
    [26] J. Connor and C. Stevens, “Voltage clamp studies of a transient outward membrane current in gastropod neural somata,” The Journal of physiology, vol. 213, no. 1, p. 21, 1971.
    [27] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.
    [28] Y. Yang, J. Ma, Y. Xu, and Y. Jia, “Energy dependence on discharge mode of izhikevich neuron driven by external stimulus under electromagnetic induction,” Cognitive Neurodynamics, vol. 15, pp. 265–277, 2021.
    [29] G. D. Smith, C. L. Cox, S. M. Sherman, and J. Rinzel, “Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model,” Journal of neurophysiology, vol. 83, no. 1, pp. 588–610, 2000.
    [30] D. McLelland and O. Paulsen, “Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information,” The Journal of physiology, vol. 587, no. 4, pp. 769–785, 2009.
    [31] B. N. Lundstrom, A. L. Fairhall, and M. Maravall, “Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo,” Journal of Neuroscience, vol. 30, no. 14, pp. 5071–5077, 2010.
    [32] V. J. DePiero and B. G. Borghuis, “Phase advancing is a common property of multiple neuron classes in the mouse retina,” Eneuro, vol. 9, no. 5, 2022.
    [33] D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince, “Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex,” Journal of neurophysiology, vol. 54, no. 4, pp. 782–806, 1985.
    [34] C.-Y. Cheng and C.-C. Lu, “The agility of a neuron: Phase shift between sinusoidal current input and firing rate curve,” in Computational Advances in Bio and Medical Sciences: 9th International Conference, ICCABS 2019, Miami, FL, USA, November 15–17, 2019, ser. Lecture Notes in Bioinformatics (LNBI), I. Mandoiu, T. Murali, G. Narasimhan, S. Rajasekaran, P. Skums, and A. Zelikovsky, Eds., vol. 12029. Springer, Cham, 2020.
    [35] ——, “The agility of a neuron: Phase shift between sinusoidal current input and firing rate curve,” Journal of Computational Biology, vol. 28, no. 2, pp. 220–234, 2021.
    [36] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous synaptic input,” Biological cybernetics, vol. 95, pp. 1–19, 2006.
    [37] E. M. Izhikevich, Dynamical systems in neuroscience. MIT press, 2007.
    [38] J. Rinzel, “Models in neurobiology,” in Nonlinear phenomena in physics and biology. Springer, 1981, pp. 345–367.
    [39] J. V. Tranquillo, “Quantitative neurophysiology,” Synthesis Lectures on Biomedical Engineering, vol. 3, no. 1, pp. 1–142, 2008.
    [40] D. J. Amit and M. Tsodyks, “Quantitative study of attractor neural network retrieving at low spike rates. i. substrate-spikes, rates and neuronal gain,” Network: Computation in neural systems, vol. 2, no. 3, p. 259, 1991.
    [41] ——, “Effective neurons and attractor neural networks in cortical environment,” Network: Computation in Neural Systems, vol. 3, no. 2, p. 121, 1992.
    [42] W. Gerstner, “Population dynamics of spiking neurons: fast transients, asynchronous states, and locking,” Neural computation, vol. 12, no. 1, pp. 43–89, 2000.
    [43] B. W. Knight, “Dynamics of encoding in a population of neurons,” The Journal of general physiology, vol. 59, no. 6, pp. 734–766, 1972.
    [44] H. Spekreijse and H. Oosting, “Linearizing: a method for analysing and synthesizing nonlinear systems,” Kybernetik, vol. 7, no. 1, pp. 22–31, 1970.
    [45] N. Brunel, F. S. Chance, N. Fourcaud, and L. F. Abbott, “Effects of synaptic noise and filtering on the frequency response of spiking neurons,” Physical Review Letters, vol. 86, no. 10, p. 2186, 2001.
    [46] C. Van Vreeswijk and H. Sompolinsky, “Chaos in neuronal networks with balanced excitatory and inhibitory activity,” Science, vol. 274, no. 5293, pp. 1724–1726, 1996.
    [47] J. Connor and C. Stevens, “Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma,” The Journal of physiology, vol. 213, no. 1, p. 31, 1971.
    [48] C.-Y. Cheng and C.-C. Lu, “Exploring a solution curve in the phase plane for extreme firing rates in the izhikevich model,” in Computational Advances in Bio and Medical Sciences: 12th International Conference, ICCABS 2023, Norman, OK, USA, December 11–13, 2023, ser. Lecture Notes in Bioinformatics (LNBI), B. M., W. Chen, Y. Khudyakov, I. Mandoiu, M. Moussa, M. Patterson, S. Rajasekaran, P. Skums, S. Thankachan, and A. Zelikovsky, Eds., vol. 14548. Springer, Cham, 2024.
    [49] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-efficient object recognition,” International Journal of Computer Vision, vol. 113, pp. 54–66, 2015.
    [50] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegelmann, and R. Kozma, “Bindsnet: A machine learning-oriented spiking neural networks library in python,” Frontiers in neuroinformatics, vol. 12, p. 89, 2018.
    [51] L. C. Garaffa, A. Aljuffri, C. Reinbrecht, S. Hamdioui, M. Taouil, and J. Sepulveda, “Revealing the secrets of spiking neural networks: The case of izhikevich neuron,” in 2021 24th Euromicro Conference on Digital System Design (DSD). IEEE, 2021, pp. 514–518.
    [52] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,” Biophysical journal, vol. 35, no. 1, pp. 193–213, 1981.
    [53] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical journal, vol. 1, no. 6, pp. 445–466, 1961.
    [54] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simulating nerve axon,” Proceedings of the IRE, vol. 50, no. 10, pp. 2061–2070, 1962.
    [55] J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using three coupled first order differential equations,” Proceedings of the Royal society of London. Series B. Biological sciences, vol. 221, no. 1222, pp. 87–102, 1984.
    [56] E. M. Izhikevich, “Solving the distal reward problem through linkage of stdp and dopamine signaling,” Cerebral cortex, vol. 17, no. 10, pp. 2443–2452, 2007.
    [57] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. R. Azghadi, “Cordic-snn: Onfpga stdp learning with izhikevich neurons,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 7, pp. 2651–2661, 2019.
    [58] K. L. Rice, M. A. Bhuiyan, T. M. Taha, C. N. Vutsinas, and M. C. Smith, “Fpga implementation of izhikevich spiking neural networks for character recognition,” in 2009 International Conference on Reconfigurable Computing and FPGAs. IEEE, 2009, pp. 451–456.
    [59] M. Mokhtar, “Bio-inspired autonomous hardware neuro-controller device on an fpga inspired by the hippocampus,” Ph.D. dissertation, University of York, 2008.
    [60] M. Richert, D. Fisher, F. Piekniewski, E. M. Izhikevich, and T. L. Hylton, “Fundamental principles of cortical computation: unsupervised learning with prediction, compression and feedback,” arXiv preprint arXiv:1608.06277, 2016.
    [61] T. Levi, T. Nanami, A. Tange, K. Aihara, and T. Kohno, “Development and applications of biomimetic neuronal networks toward brainmorphic artificial intelligence,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 577–581, 2018.
    [62] P. Benioff, “The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines,” Journal of statistical physics, vol. 22, pp. 563–591, 1980.
    [63] D. James and J. Jerke, “Effective hamiltonian theory and its applications in quantum information,” Canadian Journal of Physics, vol. 85, no. 6, pp. 625–632, 2007.
    [64] R. Salmon, “Hamiltonian fluid mechanics,” Annual review of fluid mechanics, vol. 20, no. 1, pp. 225–256, 1988.
    [65] P. J. Morrison, “Hamiltonian description of the ideal fluid,” Reviews of modern physics, vol. 70, no. 2, p. 467, 1998.
    [66] G. Feichtinger and R. F. Hartl, “On the use of hamiltonian and maximized hamiltonian in nondifferentiable control theory,” Journal of optimization theory and applications, vol. 46, pp. 493–504, 1985.
    [67] E. Todorov et al., “Optimal control theory,” Bayesian brain: probabilistic approaches to neural coding, pp. 268–298, 2006.
    [68] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” Advances in neural information processing systems, vol. 32, 2019.
    [69] U. Ramacher, “Hamiltonian dynamics of neural networks,” in Neurobionics. Elsevier, 1993, pp. 61–85.

    QR CODE