簡易檢索 / 詳目顯示

研究生: 陳穆麟
Chen, Mu-Lin
論文名稱: 硼酸表面微陣列系統的發展及應用
Development of Boronic Acid Surface Based Microarray System and Its Applications
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 219
中文關鍵詞: 微陣列硼酸具方向性醣蛋白微陣列醣微陣列醣金奈米粒子訊號放大系統
外文關鍵詞: microarray, boronic acid, oriented glycoprotein array, carbohydrate array, glyco-gold nanoparticle, signal amplification system
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,微陣列技術已經被發展成為一種高通量的檢測工具,並且已經廣泛的運用於生物分子交互作用的探討以及生醫技術應用,藉以解決基因質體學、蛋白質體學、以及醣質體學上之問題。除此之外,具有專一性的結合配對更可以以微陣列的模式來進行醫學檢測、環境監控、以及毒性物質偵測等等。為了要建立各種不同的生物分子的微陣列系統,已經有各種不同用於固定的微陣列表面官能基被廣泛的研究,然而目前為止沒有任何一樣表面官能基可以適用於全部的生物分子。因此一個容易建立且容易固定生物分子探針的新式表面工具,其可減少生物探針的處理以及可提供共價鍵固定仍然是必要的目標。
    苯基硼酸以及其衍生物已知在水溶液下會與含順式二醇形成可逆環狀酯,而多氫氧基化合物例如甘油及醣體因具有許多如此的結構,因此硼酸長久以來已經被使用來達成醣類追蹤的工具並應用於醣類感測器、多醣體偵測、以及醣胜肽與醣蛋白的濃富化與純化等等。然而就我們所知,目前硼酸並沒有應用於生物晶片的研究。有鑑於此,在此篇論文我們結合了硼酸的醣類追蹤特性及生物晶片的優點首創具有醣類追蹤能力的微陣列晶片表面,並應用於醣蛋白方向性共價鍵固定化來保持蛋白質活性,以及共價鍵固定之醣晶片系統來提升醣體在晶片表面上之保持能力。
    為了探討蛋白質的固定化,硼酸被用來追蹤Fc融合凝集素以及抗體上座落於Fc domain的醣鏈,以達到方向性固定的目標。經由比較,我們證明具方向性固定的醣蛋白具有較高的結合訊號。而由硼酸共價鍵且方向性固定的醣蛋白其相較於蛋白質G (protein G)非共價鍵且方向性固定的醣蛋白具有較高的結合訊號。
    為了建立簡單實用且具有共價固定能力的醣晶片表面,我們選用已商品化的化合物〝間-氨基苯基硼酸〞做為我們的包覆試劑,利用雙NHS活性酯長鏈與牛血清蛋白包覆的晶片進行連結,建立親水性硼酸晶片表面,再用以製造具有共價鍵固定的醣微陣列。經由共價鍵固定,我們證明醣類小分子可以被固定於晶片表面且只要具有0.5 kDa即具有與凝集素辨認的能力。除此之外,我們也成功的利用三層牛血清蛋白包覆表面來成功的減輕表面物理吸附的能力,使我們可以輕易的觀測到硼酸對醣體共價鍵固定所帶來的影響。我們證明了硼酸表面的共價鍵固定醣微陣列相較於沒有共價鍵固定的醣微陣列可以在強烈清洗下有較好的滯留能力。
    另外,由於硼酸對於抗體具有方向性固定的能力,我們也建立了抗體微陣列來進行毒物偵測。我們選用一個低毒性的蓖麻毒素替代物〝RCA120〞做為我們的毒物樣板,並用半乳醣官能基化的金奈米粒子做追蹤,最後用銀染技術做放大以達到裸眼偵測的目標。在此我們為了增進靈敏度,我們更開發了金奈米粒子專一性聚集的訊號放大系統,將靈敏度提升至毒物濃度只需aM,且不需要光學儀器即可偵測。


    In recent decades, microarray has now been emerged as a high throughput screening tool for expanding biomedical application, such as biomolecular interactions of genomics, proteomics, and more recently in glycomics. The well-known specific binding event can be further developed for clinical diagnostic, environmental monitor, and so on in microarray format. To fabricate various kinds of microarray, there are varieties of surface functional groups available for immobilization of bio-molecules. Even so, none of them could be suitable for immobilization of all kinds of bio-molecules so far. Therefore, a new surface tool, which can be easily constructed and provides a new strategy for probe immobilization that minimizes probe destruction and allows covalent bond formation, are urgently demanded.
    It is well known that phenyl boronic acid (BA) and its derivatives can form cyclic boronate esters with vicinal cis-diols and polyols, such as glycerol and carbohydrates, even under aqueous conditions. Accordingly, BA has been employed for achieving glyco-targeting such as carbohydrate biosensors, polysaccharide detection, separation or enrichment of glycoprotein and glycopeptide, and so on. However, to our knowledge, it has not been attempted to use as chips. In this thesis, we take advantage of BA to fabricate oriented protein microarray and covalent polysaccharide microarray to improve accessibility of proteins and retention of polysaccharide on slide surface.
    To improve the protein conjugation on solid support, BA was used to site-specifically assemble Fc-fused lectin and antibody from its Fc domain for maintaining the best activity on the solid surface. We demonstrated that the protein activity can be conserved when protein molecule is oriented in an optimal manner on the BA surface. In addition, m-aminophenylboronic acid was used to easily construct covalent microarray of oligosaccharide and polysaccharide of molecular weight at least 0.5 KDa. The triple BSA layers surface was successfully applied to generate hydrophilic BA surfaces to significantly alleviate nonspecific adsorption for elucidation of covalent effect upon the carbohydrate. We demonstrated that BA based oligosaccharide microarrays offer better retention of carbohydrates on supports over non-covalent attachment during more stringent washing conditions.
    Furthermore, owing to its potential application in glycoprotein microarrays, we employed antibody microarray to detect RCA120, a low-toxic “ricin” surrogate, by using galactose-gold nanoparticle (g-AuNP) and in combination with silver enhancement by the naked eye. To enhance the detection sensitivity, we developed a method to generate and amplify the signal of a antibody microarray using AuNP-based agglutination to give a new ultrasensitive assay with detection sensitivity at the attomolar (aM) level that doesn’t required any optical instrument for readout.

    Content...........................................................................................................................i Acknowledgement.......................................................................................................vii List of Figure.................................................................................................................ix List of Scheme..............................................................................................................xv List of Tables................................................................................................................xv Abbreviations..............................................................................................................xvi Abstract.......................................................................................................................xix Chapter 1. Introduction of Microarray 1.1 General Introduction of Microarray Fabrication......................................................1 1.1.1 Introduction of Microarray................................................................................1 1.1.2 Principle of Microarray.....................................................................................1 1.1.3 Microarray Construction...................................................................................4 1.1.3.1 The Substrate of Microarray.......................................................................4 1.1.3.2 Glass Slide Cleaning, Coating and Activating...........................................5 1.1.3.2.1 Glass Slide Cleaning...........................................................................5 1.1.3.2.2 So-Gel Based Coating of Glass Slide..................................................8 1.1.3.2.3 Chemistry of Surface Modification...................................................11 1.1.3.2.4 Fabrication of Microarray..................................................................12 1.1.4 Detection Strategy: Signal Generation and Amplification..............................15 1.1.4.1 The Label Based Signal Generation.........................................................15 1.1.4.2 Signal Amplification................................................................................18 1.2 Immobilization Strategies of Carbohydrate Microarray.........................................22 1.2.1 Introduction of Carbohydrate Microarray.......................................................22 1.2.2 Immobilization Strategies................................................................................23 1.2.2.1 The Modified, Noncovalent, and Oriented Strategies..............................26 1.2.2.2 The Modified, Covalent, and Oriented Strategies....................................27 1.2.2.3 The One Step Modified, Covalent, and Oriented Strategies....................30 1.2.2.4 The Unmodified, Covalent, and Random Strategies................................30 1.2.2.5 The Unmodified, Covalent, and Oriented Strategies...............................31 1.2.2.6 The Unmodified, Noncovalent, ans Random Strategies..........................31 1.3 Immobilization Strategies of Protein Microarray...................................................35 1.3.1 Introduction of Protein Microarray..................................................................35 1.3.2 Strategies for Protein Immobilization.............................................................37 1.3.2.1 Physical Adsorption.....................................................................................39 1.3.2.2 The Bioaffinity Tag for Immobilization...................................................40 1.3.2.3 Immobilization by Photochemistry..........................................................42 1.3.2.3.1 Arylazide...........................................................................................44 1.3.2.3.2 Diazirines..........................................................................................45 1.3.2.3.3 Benzophenones..................................................................................45 1.3.2.3.4 Nitrobenzyl........................................................................................46 1.3.2.3.5 Heterobifunctional Photolinkers.......................................................46 1.3.2.3.6 Photolabeling for Bioaffinity Immobilization..................................47 1.3.2.4 Protein Side Chain Functional Groups Based Chemistry........................47 1.3.2.4.1 Immobilization via Amine................................................................48 1.3.2.4.1.1 Amide Bond Formation by Activated Ester...............................48 1.3.2.4.1.2 Imine -Based Chemistry for Conjugation..................................50 1.3.2.4.1.3 Thiourea Formation by Isothiocyanate......................................51 1.3.2.4.1.4 Amino-alcohol Formation by Epoxy Groups.............................51 1.3.2.4.2 Thiol Reactive Chemistry..................................................................52 1.3.2.4.2.1 Michael Addition by Maleimide................................................53 1.3.2.4.2.2 Disulfide Bond Formation by Pyridyl Disulfide........................53 1.3.2.4.2.3 Michael Addition by Vinyl Sulfone...........................................53 1.3.2.4.2.4 Thiol Reactive Labeling for Bioaffinity Immobilization...........54 1.3.2.4.3 Carboxyl Reactive Chemistry...........................................................56 1.3.2.4.3.1 Amide Bond Formation by Amine.............................................56 1.3.2.4.3.2 Carboxyl Reactive Labeling for Bioaffinity Immobilization….56 1.3.2.5 Site-specific Tag Fusion Protein by Recombinant Technology…………57 1.3.2.5.1 Oriented Bioaffinity Immobilization by Biologically Active Fusion Proteins.............................................................................................58 1.3.2.5.2 Oriented Covalent Immobilization by Biologically Active Fusion Proteins.............................................................................................59 1.3.2.5.3 Oriented Immobilization by Intein Tag Fusion.................................60 1.3.3 Antibody Immobilization Strategies...............................................................65 1.3.3.1 Targeting the Carbohydrate Moiety.........................................................66 1.3.3.2 Protein A/Protein G-Mediated Immobilization........................................67 1.4 Boronic Acid Based Immobilization through Carbohydrate Targeting.................68 1.4.1 Introduction of Boronic Acid..........................................................................68 1.4.2 Boronic Acid–Diol Complexation..................................................................72 1.4.3 Overview of BA Applications.........................................................................74 1.4.4 Boronic Acid Based Immobilization of Glycoprotein.....................................90 Chapter 2. Fabrication of an Oriented Fc-Fused Lectin Microarray through Boronate Formation 2.1 Introduction............................................................................................................93 2.2 Results and Discussion...........................................................................................96 2.2.1 Fc-fused Lectin Microarray by Random Schiff’s Base Formation for Probing Reishi Polysaccharide Interactions.................................................................96 2.2.2 Fabrication of Fc-fused Dectin-1 Microarray through Covalent and Site-specific Immobilization by Boronate formation....................................97 2.2.3 Immobilization of Fc-fused Dectin-1 on Glass Surface via Non-covalent and Site-specific Immobilization by Fc-receptor Modified Surface...................111 2.2.4 Comparison of Site-specific Immobilization and Random Schiff’s Base Formation....................................................................................................114 2.3 Conclusion............................................................................................................122 2.4 Materials and Methods.........................................................................................122 2.4.1 Fc-fused Lectins and Microarray Reagents...................................................122 2.4.2 Fc-fused Fluorescent Recombinant Protein Expression and Purification.....123 2.4.3 General Procedure for Microarray Fabrication.............................................123 2.4.4 Fabrication of BA Microarray for the Binding Test of Polysaccharide F3-biotin.......................................................................................................124 2.4.5 The Polysaccharide F3-biotin Microarray Fabricated through Boronate Formation.....................................................................................................125 2.4.6 Chemical Competition Assay for Selection of Capping Reagent for BA-based Slide..............................................................................................................125 2.4.7 Background Noise Suppression of Dextran..................................................125 2.4.8 Carbohydrate Competition Assay..................................................................126 2.4.9 BA–based Slides for Production of Fc-fused Lectin Microarrays................126 2.4.10 Comparison of protein A/G layer for Fc-Dectin-1 Microarray...................126 2.4.11 General Procedure Used for Fabrication of Protein G Layer to Achieve Site-specific Immobilization......................................................................126 2.4.12 Synthesis of APBA-TEG.............................................................................127 Chapter 3. Boronic Acid Based Oligosaccharide and Polysaccharide Microarray 3.1 Introduction..........................................................................................................129 3.2 Results and Discussion.........................................................................................132 3.2.1 Epoxy-BA Surface for Observation of Covalent Boronate Immobilization………………………………………………………….132 3.2.2 Triple BSA Coating for Hydrophilic Slide Surface………………………..133 3.2.3 BSA-BA Surface for Observation of Covalent Boronate Immobilization…135 3.2.4 BSA-BA Surface Based Oligosaccharide and Polysacchride Microarray.....139 3.3 Conclusion............................................................................................................142 3.4 Materials and Methods.........................................................................................143 3.4.1 Oligosaccharide, Polysaccharide and Microarray Reagents.........................143 3.4.2 Conditions for Validating the Effect of Covalent Boronate Immobilization on Bifunctional Boronate-Epoxy Slide.............................................................144 3.4.3 Characterization of BSA Based Aldehyde Slide Surface..............................145 3.4.4 Conditions for Validating the Effect of Covalent Boronate Immobilization on Hydrophilic BSA Layers Based BA Surface...............................................146 3.4.5 BSA-BA Based Oligosaccharide and Polysacchride Microarray..................146 Chapter 4. Microarray/Glyconanoparticle-Based Agglutination as an Ultrasensitive Label-Free Method to Detect Lectins 4.1 Introduction..........................................................................................................148 4.1.1 Background and Challenge...............................................................................148 4.1.2 X-Ray Crystal Structural Information of Ricin, and Low Toxic Ricin Surrogate “RCA120”............................................................................................................150 4.1.3 Present Work: Designing of New Microarray-based Naked Eye Detection Assay for RCA120........................................................................................................152 4.2 Results and Discussion.........................................................................................154 4.2.1 Synthesis of Galactose-encapsulated AuNPs and Agglutination Test...........154 4.2.1.1 Synthesis of Galactose-encapsulated AuNPs (g-AuNP)........................154 4.2.1.2 Colorimetric Detection of RCA120.........................................................155 4.2.1.3 Dynamic Light Scattering Studies……………………..........................157 4.2.2 Conventional Layer-by-Layer Sandwich Assay…........................................159 4.2.2.1 Detection of RCA120 by Random Immobilized Antibody Microarray...159 4.2.2.2 Detection of RCA120 by Site-specific Antibody Microarrays through Oriented Boronate Formation...............................................................160 4.2.3 Galactose-AuNPs/Microarray-Based Silver-enhanced Naked Eye Detection of RCA120............................................................................................................161 4.2.4 Generality of the Agglutination Method: A tetrameric Plant Lectin, ConA as a Target...........................................................................................................163 4.3 Conclusion............................................................................................................167 4.4 Materials and Methods.........................................................................................168 4.4.1 Reagents........................................................................................................168 4.4.2 Synthesis of Thiolated Mannose- and Galactose-Derivatives.......................169 4.4.3 Preparation of Glyco-AuNPs........................................................................170 4.4.4 Fabrication of Antibody Microarray.............................................................171 4.4.5 Silver Enhancement………………………………………………………...171 4.4.6 Immunoassay Principles................................................................................171 4.4.7 Glyco-AuNP Based Enrichment of RCA120 For Microarray Detection........172 4.4.8 In situ RCA120 Induced AuNPs Agglutination on Microarray For Detection of RCA120..........................................................................................................173 Chapter 5. Conclusion and Perspective…………………………………………..174 Reference....................................................................................................................178 Publications................................................................................................................206 Appendix....................................................................................................................207 Appendix I: Spectrum of BA Compound……………………………………...……207 Appendix II: TSA Fluorescence Systems…………………………………………..211

    1. Stone, R., Sciencescope. Science 1995, 269, 467.
    2. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467-470.
    3. Chambers, J. P.; Arulanandam, B. P.; Matta, L. L.; Weis, A.; Valdes, J. J., Biosensor recognition elements. Curr. Issues Mol. Biol. 2008, 10, 1-12.
    4. Storhoff, J. J.; Marla, S. S.; Garimella, V.; Mirkin, C. A., Labels and detection methods. In Microarray technology and its applications, Müller, U. R.; Nicolau, D. V., Eds. Springer: Berlin Heidelberg, 2005; pp 147-179.
    5. Sadaghiani, A. M.; Verhelst, S. H.; Bogyo, M., Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 2007, 11, 20-28.
    6. Birch, W. R. Coating : an introduction to the cleaning procedures. http://www.solgel.com/articles/June00/Birch/cleaning.htm
    7. Zammatteo, N.; Jeanmart, L.; Hamels, S.; Courtois, S.; Louette, P.; Hevesi, L.; Remacle, J., Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 2000, 280, 143-150.
    8. Birch, W.; Mechken, S.; Carre, A., Influence of cleaning on the surface of model glasses and their sensitivity to organic contamination. In Surface contamination and cleaning, Mittal, K. L., Ed. VSP Books Utrecht, The Netherlands, 2003; Vol. 1, pp 85-107.
    9. Shirai, K.; Yoshida, Y.; Nakayama, Y.; Fujitani, M.; Shintani, H.; Wakasa, K.; Okazaki, M.; Snauwaert, J.; Van Meerbeek, B., Assessment of decontamination methods as pretreatment of silanization of composite glass fillers. J. Biomed. Mater. Res. 2000, 53, 204-210.
    10. Lee, P. H.; Sawan, S. P.; Modrusan, Z.; Arnold, L. J., Jr.; Reynolds, M. A., An efficient binding chemistry for glass polynucleotide microarrays. Bioconjug. Chem. 2002, 13, 97-103.
    11. Kumar, A.; Larsson, O.; Parodi, D.; Liang, Z., Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Res. 2000, 28, E71.
    12. Erdogan, F.; Kirchner, R.; Mann, W.; Ropers, H. H.; Nuber, U. A., Detection of mitochondrial single nucleotide polymorphisms using a primer elongation reaction on oligonucleotide microarrays. Nucleic Acids Res. 2001, 29, E36.
    13. Ward, B., A begginner's guide to microarray. In A beginner's guide to microarray, Blalock, E. M., Ed. KLUWER ACADEMIC PUBLISHER: Boston/ NewYork/ Dordrecht/ London, 2003; pp 1-44.
    14. Guo, Z.; Guilfoyle, R. A.; Thiel, A. J.; Wang, R.; Smith, L. M., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 1994, 22, 5456-5465.
    15. Lamture, J. B.; Beattie, K. L.; Burke, B. E.; Eggers, M. D.; Ehrlich, D. J.; Fowler, R.; Hollis, M. A.; Kosicki, B. B.; Reich, R. K.; Smith, S. R.; et al., Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 1994, 22, 2121-2125.
    16. Moller, R.; Csaki, A.; Kohler, J. M.; Fritzsche, W., DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res. 2000, 28, E91.
    17. Wang, D.; Bierwagen, G. P., Sol-gel coatings on metals for corrosion protection. Progress in Organic Coatings 2009, 64, 327-338.
    18. Arkles, B., Tailoring surfaces with silanes. Chemtech 1977, 766-778.
    19. Conzone, S. D.; Pantano, C. G., Glass slides to DNA microarrays. Materials Today 2004, 7, 20-26.
    20. Damia, C.; Sarda, S.; Deydier, E.; Sharrock, P., Study of two hydroxyapatite/poly(alkoxysilane) implant coatings. Surface and Coatings Technology 2006, 201, 3008-3015.
    21. 馬立人、蔣中華、白壽雄, 生物晶片的製作方法. In 生物晶片, 2 ed.; 九州圖書文物有限公司: 臺北, 2003; pp 29-65.
    22. Xu, Q.; Lam, K. S., Protein and chemical microarrays-powerful tools for proteomics. J. Biomed. Biotechnol. 2003, 2003, 257-266.
    23. Frank, R., Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992, 48, 9217-9232.
    24. Fodor, S. P.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.; Solas, D., Light-directed, spatially addressable parallel chemical synthesis. Science 1991, 251, 767-773.
    25. Barbulovic-Nad, I.; Lucente, M.; Sun, Y.; Zhang, M.; Wheeler, A. R.; Bussmann, M., Bio-microarray fabrication techniques-a review. Crit. Rev. Biotechnol. 2006, 26, 237-259.
    26. Campas, M.; Katakis, I., DNA biochip arraying, detection and amplification strategies. TrAC Trends Anal. Chem. 2004, 23, 49-62.
    27. Angenendt, P., Progress in protein and antibody microarray technology. Drug Discovery Today 2005, 10, 503-511.
    28. Nistor, C.; Emn´eus, J., Immunoassay: potentials and limitations. In Biosensors and modern biospecific analytical techniques, Gorton, L., Ed. Elsevier Science Amsterdam, 2005; Vol. 44, p 375.
    29. Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S., Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug. Chem. 2001, 12, 346-353.
    30. Zhu, H.; Bilgin, M.; Snyder, M., Proteomics. Annu. Rev. Biochem. 2003, 72, 783-812.
    31. Roman, S.; Clarke, S., Fluorescent detection methods for protein microarrays. In Functional protein microarrays in drug discovery, Predki, P. F., Ed. CRC Press (Taylor & Francis Group): Boca Raton London New York, 2007; pp 147-180.
    32. Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41-46.
    33. Wilchek, M.; Bayer, E. A., Introduction to avidin-biotin technology. Methods Enzymol. 1990, 184, 5-13.
    34. Wilchek, M.; Bayer, E. A., Avidin-biotin mediated immunoassays: overview. Methods Enzymol. 1990, 184, 467-469.
    35. Wilchek, M.; Bayer, E. A.; Livnah, O., Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol. Lett. 2006, 103, 27-32.
    36. Saiki, R. K.; Scharf, S.; Faloona, F.; Mullis, K. B.; Horn, G. T.; Erlich, H. A.; Arnheim, N., Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230, 1350-1354.
    37. Sano, T.; Smith, C. L.; Cantor, C. R., Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992, 258, 120-122.
    38. Adler, M.; Wacker, R.; Niemeyer, C. M., Sensitivity by combination: immuno-PCR and related technologies. Analyst 2008, 133, 702-718.
    39. Niemeyer, C. M.; Adler, M.; Wacker, R., Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005, 23, 208-216.
    40. Schweitzer, B.; Wiltshire, S.; Lambert, J.; O'Malley, S.; Kukanskis, K.; Zhu, Z.; Kingsmore, S. F.; Lizardi, P. M.; Ward, D. C., Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10113-10119.
    41. Schweitzer, B.; Roberts, S.; Grimwade, B.; Shao, W.; Wang, M.; Fu, Q.; Shu, Q.; Laroche, I.; Zhou, Z.; Tchernev, V. T.; Christiansen, J.; Velleca, M.; Kingsmore, S. F., Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 2002, 20, 359-365.
    42. Shao, W.; Zhou, Z.; Laroche, I.; Lu, H.; Zong, Q.; Patel, D. D.; Kingsmore, S.; Piccoli, S. P., Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J. Biomed. Biotechnol. 2003, 2003, 299-307.
    43. Varnum, S. M.; Woodbury, R. L.; Zangar, R. C., A protein microarray ELISA for screening biological fluids. Methods Mol. Biol. 2004, 264, 161-172.
    44. van Gijlswijk, R. P.; Zijlmans, H. J.; Wiegant, J.; Bobrow, M. N.; Erickson, T. J.; Adler, K. E.; Tanke, H. J.; Raap, A. K., Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 1997, 45, 375-382.
    45. Speel, E. J.; Hopman, A. H.; Komminoth, P., Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J. Histochem. Cytochem. 1999, 47, 281-288.
    46. Hopman, A. H.; Ramaekers, F. C.; Speel, E. J., Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J. Histochem. Cytochem. 1998, 46, 771-777.
    47. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, 1757-1760.
    48. Oliver, C., Use of immunogold with silver enhancement. Methods Mol. Biol. 1999, 115, 241-245.
    49. Park, S.; Lee, M. R.; Shin, I., Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 2008, 4389-4399.
    50. Wu, C. Y.; Liang, P. H.; Wong, C. H., New development of glycan arrays. Org. Biomol. Chem. 2009, 7, 2247-2254.
    51. Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A., Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 2002, 20, 275-281.
    52. Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W., Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 2002, 20, 1011-1017.
    53. Ko, K. S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
    54. Park, S.; Shin, I., Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 2002, 41, 3180-3182.
    55. Park, S.; Lee, M. R.; Pyo, S. J.; Shin, I., Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 2004, 126, 4812-4819.
    56. Houseman, B. T.; Gawalt, E. S.; Mrksich, M., Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 2003, 19, 1522-1531.
    57. Ratner, D. M.; Adams, E. W.; Su, J.; O'Keefe, B. R.; Mrksich, M.; Seeberger, P. H., Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chembiochem 2004, 5, 379-382.
    58. Adams, E. W.; Ratner, D. M.; Bokesch, H. R.; McMahon, J. B.; O'Keefe, B. R.; Seeberger, P. H., Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem. Biol. 2004, 11, 875-881.
    59. Houseman, B. T.; Mrksich, M., Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 2002, 9, 443-454.
    60. Lee, M. R.; Shin, I., Fabrication of chemical microarrays by efficient immobilization of hydrazide-linked substances on epoxide-coated glass surfaces. Angew. Chem. Int. Ed. Engl. 2005, 44, 2881-2884.
    61. Park, S.; Shin, I., Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 2007, 9, 1675-1678.
    62. Park, S.; Lee, M. R.; Shin, I., Fabrication of carbohydrate chips and their use to probe protein-carbohydrate interactions. Nat. Protoc. 2007, 2, 2747-2758.
    63. Manimala, J. C.; Li, Z.; Jain, A.; VedBrat, S.; Gildersleeve, J. C., Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem 2005, 6, 2229-2241.
    64. Blixt, O.; Head, S.; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C.; Fazio, F.; Calarese, D.; Stevens, J.; Razi, N.; Stevens, D. J.; Skehel, J. J.; van Die, I.; Burton, D. R.; Wilson, I. A.; Cummings, R.; Bovin, N.; Wong, C. H.; Paulson, J. C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17033-17038.
    65. de Paz, J. L.; Noti, C.; Seeberger, P. H., Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 2006, 128, 2766-2767.
    66. Schwarz, M.; Spector, L.; Gargir, A.; Shtevi, A.; Gortler, M.; Altstock, R. T.; Dukler, A. A.; Dotan, N., A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 2003, 13, 749-754.
    67. de Paz, J. L.; Spillmann, D.; Seeberger, P. H., Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin. Chem. Commun. 2006, 3116-3118.
    68. Tully, S. E.; Rawat, M.; Hsieh-Wilson, L. C., Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays. J. Am. Chem. Soc. 2006, 128, 7740-7741.
    69. Kohn, M.; Wacker, R.; Peters, C.; Schroder, H.; Soulere, L.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H., Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew. Chem. Int. Ed. Engl. 2003, 42, 5830-5834.
    70. Sun, X. L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L., Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. Bioconjug. Chem. 2006, 17, 52-57.
    71. Bryan, M. C.; Fazio, F.; Lee, H. K.; Huang, C. Y.; Chang, A.; Best, M. D.; Calarese, D. A.; Blixt, O.; Paulson, J. C.; Burton, D.; Wilson, I. A.; Wong, C. H., Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 2004, 126, 8640-8641.
    72. Michel, O.; Ravoo, B. J., Carbohydrate microarrays by microcontact "click" chemistry. Langmuir 2008, 24, 12116-12118.
    73. Baskin, J. M.; Bertozzi, C., Bioorthogonal click chemistry: covalent labeling in living systems. QSAR & Combinatorial Science 2007, 26, 1211-1219.
    74. Xia, B.; Kawar, Z. S.; Ju, T.; Alvarez, R. A.; Sachdev, G. P.; Cummings, R. D., Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Meth. 2005, 2, 845-850.
    75. Bohorov, O.; Andersson-Sand, H.; Hoffmann, J.; Blixt, O., Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology 2006, 16, 21C-27C.
    76. Angeloni, S.; Ridet, J. L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005, 15, 31-41.
    77. Lee, M. R.; Shin, I., Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 2005, 7, 4269-4272.
    78. Park, S.; Lee, M. R.; Shin, I., Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjug. Chem. 2009, 20, 155-162.
    79. Zhou, X.; Zhou, J., Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron. 2006, 21, 1451-1458.
    80. Larsen, K.; Thygesen, M. B.; Guillaumie, F.; Willats, W. G.; Jensen, K. J., Solid-phase chemical tools for glycobiology. Carbohydr. Res. 2006, 341, 1209-1234.
    81. Willats, W. G.; Rasmussen, S. E.; Kristensen, T.; Mikkelsen, J. D.; Knox, J. P., Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2002, 2, 1666-1671.
    82. Shipp, E. L.; Hsieh-Wilson, L. C., Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem. Biol. 2007, 14, 195-208.
    83. Carion, O.; Lefebvre, J.; Dubreucq, G.; Dahri-Correia, L.; Correia, J.; Melnyk, O., Polysaccharide microarrays for polysaccharide-platelet-derived-growth-factor interaction studies. Chembiochem 2006, 7, 817-826.
    84. Mitchell, P., A perspective on protein microarrays. Nat. Biotechnol. 2002, 20, 225-229.
    85. Zhu, H.; Snyder, M., Protein chip technology. Curr. Opin. Chem. Biol. 2003, 7, 55-63.
    86. Eisenstein, M., 'Chain gang' delivers for hard labor. Nat. Meth. 2006, 3, 753-762.
    87. Betton, J. M., High throughput cloning and expression strategies for protein production. Biochimie 2004, 86, 601-605.
    88. Sitaraman, K.; Chatterjee, D. K., High-throughput protein expression using cell-free system. Methods Mol. Biol. 2009, 498, 229-244.
    89. Sawasaki, T.; Ogasawara, T.; Morishita, R.; Endo, Y., A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 14652-14657.
    90. Yokoyama, S., Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 2003, 7, 39-43.
    91. Hlady, V. V.; Buijs, J., Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77.
    92. Gray, J. J., The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004, 14, 110-115.
    93. Rusmini, F.; Zhong, Z.; Feijen, J., Protein immobilization strategies for protein biochips. Biomacromolecules 2007, 8, 1775-1789.
    94. Jonkheijm, P.; Weinrich, D.; Schroder, H.; Niemeyer, C. M.; Waldmann, H., Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. Engl. 2008, 47, 9618-9647.
    95. Piletsky, S.; Piletska, E.; Bossi, A.; Turner, N.; Turner, A., Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. Biotechnol. Bioeng. 2003, 82, 86-92.
    96. Stillman, B. A.; Tonkinson, J. L., FAST slides: a novel surface for microarrays. Biotechniques 2000, 29, 630-635.
    97. Reck, M.; Stahl, F.; Walter, J. G.; Hollas, M.; Melzner, D.; Scheper, T., Optimization of a microarray sandwich-ELISA against hINF-gamma on a modified nitrocellulose membrane. Biotechnol. Prog. 2007, 23, 1498-1505.
    98. Rich, R. L.; Myszka, D. G., Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 2000, 11, 54-61.
    99. Rich, R. L.; Myszka, D. G., Survey of the year 2005 commercial optical biosensor literature. J. Mol. Recognit. 2006, 19, 478-534.
    100. Rich, R. L.; Myszka, D. G., Survey of the year 2006 commercial optical biosensor literature. J. Mol. Recognit. 2007, 20, 300-366.
    101. Wilson, D. L.; Martin, R.; Hong, S.; Cronin-Golomb, M.; Mirkin, C. A.; Kaplan, D. L., Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 13660-13664.
    102. Lee, K. B.; Lim, J. H.; Mirkin, C. A., Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 2003, 125, 5588-5589.
    103. Waugh, D. S., Making the most of affinity tags. Trends Biotechnol. 2005, 23, 316-320.
    104. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2003, 60, 523-533.
    105. Arnau, J.; Lauritzen, C.; Petersen, G. E.; Pedersen, J., Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif. 2006, 48, 1-13.
    106. Roy, I.; Gupta, M. N., Bioaffinity immobilization. In 2006; Vol. 22, pp 107-116.
    107. Niemeyer, C. M., Semi-synthetic nucleic acid-protein conjugates: applications in life sciences and nanobiotechnology. J. Biotechnol. 2001, 82, 47-66.
    108. Niemeyer, C. M., The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol. 2002, 20, 395-401.
    109. Weng, S.; Gu, K.; Hammond, P. W.; Lohse, P.; Rise, C.; Wagner, R. W.; Wright, M. C.; Kuimelis, R. G., Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. Proteomics 2002, 2, 48-57.
    110. Sigrist, H.; Collioud, A.; Clemence, J.-F.; Gao, H.; Luginbuehl, R.; Saenger, M.; Sundarababu, G., Surface immobilization of biomolecules by light. Opt. Eng. 1995, 34, 2339-2348.
    111. Blawas, A. S.; Reichert, W. M., Protein patterning. Biomaterials 1998, 19, 595-609.
    112. Vodovozova, E. L., Photoaffinity labeling and its application in structural biology. Biochemistry (Mosc). 2007, 72, 1-20.
    113. Caelen, I.; Gao, H.; Sigrist, H., Protein Density Gradients on Surfaces. Langmuir 2002, 18, 2463-2467.
    114. Collioud, A.; Clemence, J. F.; Saenger, M.; Sigrist, H., Oriented and covalent immobilization of target molecules to solid supports: Synthesis and application of a light-activatable and thiol-reactive cross-linking reagent. Bioconjug. Chem. 1993, 4, 528-536.
    115. Philipona, C.; Chevolot, Y.; Leonard, D.; Mathieu, H. J.; Sigrist, H.; Marquis-Weible, F., A scanning near-field optical microscope approach to biomolecule patterning. Bioconjug. Chem. 2001, 12, 332-336.
    116. Rozsnyai, L. F.; Benson, D. R.; Fodor, S. P. A.; Schultz, P. G., Photolithographic immobilization of biopolymers on solid supports. Angew. Chem. Int. Ed. Engl. 1992, 31, 759-761.
    117. Pirrung, M. C.; Huang, C.-Y., A general method for the spatially defined immobilization of biomolecules on glass surfaces using "caged" biotin. Bioconjug. Chem. 1996, 7, 317-321.
    118. Sundberg, S. A.; Barrett, R. W.; Pirrung, M.; Lu, A. L.; Kiangsoontra, B.; Holmes, C. P., Spatially-addressable immobilization of macromolecules on solid supports. J. Am. Chem. Soc. 1995, 117, 12050-12057.
    119. Blawas, A. S.; Oliver, T. F.; Pirrung, M. C.; Reichert, W. M., Step-and-Repeat photopatterning of protein features using caged-biotin BSA: Characterization and resolution. Langmuir 1998, 14, 4243-4250.
    120. Nahar, P.; Wali, N. M.; Gandhi, R. P., Light-induced activation of an inert surface for covalent immobilization of a protein ligand. Anal. Biochem. 2001, 294, 148-153.
    121. Nivens, D. A.; Conrad, D. W., Photoactive poly(ethylene glycol) organosilane films for site-specific protein immobilization. Langmuir 2002, 18, 499-504.
    122. Pritchard, D. J.; Morgan, H.; Cooper, J. M., Micron-scale patterning of biological molecules. Angew. Chem. Int. Ed. Engl. 1995, 34, 91-93.
    123. Yan, M.; Cai, S. X.; Wybourne, M. N.; Keana, J. F. W., Photochemical functionalization of polymer surfaces and the production of biomolecule-carrying micrometer-scale structures by deep-UV lithography using 4-substituted perfluorophenyl azides. J. Am. Chem. Soc. 1993, 115, 814-816.
    124. Lacey, E.; Grant, W. N., Photobiotin as a sensitive probe for protein labelling. Anal. Biochem. 1987, 163, 151-158.
    125. Hermanson, G. T., Bioconjugate techniques Academic Press: San Diego, CA. , 1996.
    126. Yam, C. M.; Deluge, M.; Tang, D.; Kumar, A.; Cai, C., Preparation, characterization, resistance to protein adsorption, and specific avidin-biotin binding of poly(amidoamine) dendrimers functionalized with oligo(ethylene glycol) on gold. J. Colloid Interface Sci. 2006, 296, 118-130.
    127. Patel, N.; Davies, M. C.; Hartshorne, M.; Heaton, R. J.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M., Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 1997, 13, 6485-6490.
    128. Johnsson, B.; Lofas, S.; Lindquist, G., Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 1991, 198, 268-277.
    129. Rao, S. V.; Anderson, K. W.; Bachas, L. G., Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol. Bioeng. 1999, 65, 389-396.
    130. Feng, C. L.; Embrechts, A.; Bredebusch, I.; Schnekenburger, J.; Domschke, W.; Vancso, G. J.; Schonherr, H., Reactive microcontact printing on block copolymer films: exploiting chemistry in microcontacts for sub-micrometer patterning of biomolecules. Adv. Mater. 2007, 19, 286-290.
    131. Bhangale, S. M.; Tjong, V.; Wu, L.; Yakovlev, N.; M. Moran, P., Biologically active protein gradients via microstamping. Adv. Mater. 2005, 17, 809-813.
    132. Reynolds, N. P.; Janusz, S.; Escalante-Marun, M.; Timney, J.; Ducker, R. E.; Olsen, J. D.; Otto, C.; Subramaniam, V.; Leggett, G. J.; Hunter, C. N., Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes. J. Am. Chem. Soc. 2007, 129, 14625-14631.
    133. Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M.; Witte, K.; Jung, L. S.; Wagner, P.; Nock, S., Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 2003, 312, 113-124.
    134. Christer, W.; Johan, I.; Linda, D.; Dominika, S.; Carl, A. K. B., Design of recombinant antibody microarrays for complex proteome analysis: Choice of sample labeling-tag and solid support. Proteomics 2007, 7, 3055-3065.
    135. Chattopadhaya, S.; Tan, L. P.; Yao, S. Q., Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat. Protoc. 2006, 1, 2386-2398.
    136. Luo, S.; Walt, D. R., Avidin-biotin coupling as a general method for preparing enzyme-based fiber-optic sensors. Anal. Chem. 1989, 61, 1069-1072.
    137. Glynou, K.; Ioannou, P. C.; Christopoulos, T. K., Affinity capture-facilitated preparation of aequorin- oligonucleotide conjugates for rapid hybridization assays. Bioconjug. Chem. 2003, 14, 1024-1029.
    138. D'Souza, S. F.; Godbole, S. S., Immobilization of invertase on rice husk using polyethylenimine. J. Biochem. Biophys. Methods 2002, 52, 59-62.
    139. Choi, H. J.; Kim, N. H.; Chung, B. H.; Seong, G. H., Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin. Anal. Biochem. 2005, 347, 60-66.
    140. MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
    141. Avseenko, N. V.; Morozova, T. Y.; Ataullakhanov, F. I.; Morozov, V. N., Immobilization of proteins in immunochemical microarrays fabricated by electrospray deposition. Anal. Chem. 2001, 73, 6047-6052.
    142. Rozkiewicz, D. I.; Kraan, Y.; Werten, M. W.; de Wolf, F. A.; Subramaniam, V.; Ravoo, B. J.; Reinhoudt, D. N., Covalent microcontact printing of proteins for cell patterning. Chemistry 2006, 12, 6290-6297.
    143. Liu, G. Y.; Amro, N. A., Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5165-5170.
    144. Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G.-y., Fabrication and imaging of nanometer-sized protein patterns. Langmuir 1999, 15, 8580-8583.
    145. Case, M. A.; McLendon, G. L.; Hu, Y.; Vanderlick, T. K.; Scoles, G., Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold. Nano Letters 2003, 3, 425-429.
    146. Hu, Y.; Das, A.; Hecht, M. H.; Scoles, G., Nanografting de novo proteins onto gold surfaces. Langmuir 2005, 21, 9103-9109.
    147. Groll, J.; Amirgoulova, E. V.; Ameringer, T.; Heyes, C. D.; Rocker, C.; Nienhaus, G. U.; Moller, M., Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J. Am. Chem. Soc. 2004, 126, 4234-4239.
    148. Holmes, K. L.; Lantz, L. M., Protein labeling with fluorescent probes. In Cytometry, Darzynkiewicz, Z.; Robinson, J. P.; Crissman, H. A., Eds. Academic Press: San Diego, CA. , 2000.
    149. Mateo, C.; Torres, R.; Fernandez-Lorente, G.; Ortiz, C.; Fuentes, M.; Hidalgo, A.; Lopez-Gallego, F.; Abian, O.; Palomo, J. M.; Betancor, L.; Pessela, B. C.; Guisan, J. M.; Fernandez-Lafuente, R., Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 2003, 4, 772-777.
    150. Mateo, C.; Abian, O.; Fernandez-Lorente, G.; Pedroche, J.; Fernandez-Lafuente, R.; Guisan, J. M.; Tam, A.; Daminati, M., Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol. Prog. 2002, 18, 629-634.
    151. Grazu, V.; Abian, O.; Mateo, C.; Batista-Viera, F.; Fernandez-Lafuente, R.; Guisan, J. M., Novel bifunctional epoxy/thiol-reactive support to immobilize thiol containing proteins by the epoxy chemistry. Biomacromolecules 2003, 4, 1495-1501.
    152. Viitala, T.; Vikholm, I.; Peltonen, J., Protein Immobilization to a Partially Cross-Linked Organic Monolayer. Langmuir 2000, 16, 4953-4961.
    153. Gauvreau, V.; Chevallier, P.; Vallieres, K.; Petitclerc, E.; Gaudreault, R. C.; Laroche, G., Engineering surfaces for bioconjugation: Developing strategies and quantifying the extent of the reactions. Bioconjug. Chem. 2004, 15, 1146-1156.
    154. Jongsma, M. A.; Litjens, R. H., Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address. Proteomics 2006, 6, 2650-2655.
    155. Wacker, R.; Schroder, H.; Niemeyer, C. M., Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal. Biochem. 2004, 330, 281-287.
    156. Corey, D. R.; Munoz-Medellin, D.; Huang, A., Strand invasion by oligonucleotide--nuclease conjugates. Bioconjug. Chem. 1995, 6, 93-100.
    157. Kunath, K.; Merdan, T.; Hegener, O.; Haberlein, H.; Kissel, T., Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J. Gene Med. 2003, 5, 588-599.
    158. Masri, M. S.; Friedman, M., Protein reactions with methyl and ethyl vinyl sulfones. J. Protein Chem. 1988, 7, 49-54.
    159. Rizzi, S. C.; Hubbell, J. A., Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 2005, 6, 1226-1238.
    160. Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M., Preparation of characterization of poly(ethylene glycol) vinyl sulfone. Bioconjug. Chem. 1996, 7, 363-368.
    161. Lutolf, M. P.; Hubbell, J. A., Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 2003, 4, 713-722.
    162. Atanasijevic, T.; Shusteff, M.; Fam, P.; Jasanoff, A., Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 14707-14712.
    163. Cho, I.-H.; Paek, E.-H.; Lee, H.; Kang, J. Y.; Kim, T. S.; Paek, S.-H., Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Anal. Biochem. 2007, 365, 14-23.
    164. Boozer, C.; Ladd, J.; Chen, S.; Yu, Q.; Homola, J.; Jiang, S., DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Anal. Chem. 2004, 76, 6967-6972.
    165. Boozer, C.; Ladd, J.; Chen, S.; Jiang, S., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 2006, 78, 1515-1519.
    166. Schlapak, R.; Pammer, P.; Armitage, D.; Zhu, R.; Hinterdorfer, P.; Vaupel, M.; Fruhwirth, T.; Howorka, S., Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays. Langmuir 2006, 22, 277-285.
    167. Howorka, S.; Cheley, S.; Bayley, H., Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 2001, 19, 636-639.
    168. Fernandez-Lafuente, R.; Rosell, C. M.; Rodriguez, V.; Santana, C.; Soler, G.; Bastida, A.; Guisan, J. M., Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme Microb. Technol. 1993, 15, 546-550.
    169. Tischer, W.; Wedekind, F., Immobilized enzymes: Methods and applications In Top. Curr. Chem., Springer: Berlin / Heidelberg, 1999; Vol. 200, pp 95-126.
    170. Sheffield, W.; Eltringham-Smith, L.; Gataiance, S.; Bhakta, V., Addition of a sequence from alpha2-antiplasmin transforms human serum albumin into a blood clot component that speeds clot lysis. BMC Biotechnology 2009, 9, 15.
    171. Martzen, M. R.; McCraith, S. M.; Spinelli, S. L.; Torres, F. M.; Fields, S.; Grayhack, E. J.; Phizicky, E. M., A Biochemical Genomics Approach for Identifying Genes by the Activity of Their Products. Science 1999, 286, 1153-1155.
    172. Riggs, P., Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol. Biotechnol. 2000, 15, 51-63.
    173. Bouchard, B. A.; Furie, B.; Furie, B. C., Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation. Biochemistry (Mosc). 1999, 38, 9517-9523.
    174. Schmitt, J.; Hess, H.; Stunnenberg, H. G., Affinity purification of histidine-tagged proteins. Mol. Biol. Rep. 1993, 18, 223-230.
    175. Svendsen, S.; Zimprich, C.; McDougall, M. G.; Klaubert, D. H.; Los, G. V., Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter. BMC Cell Biol. 2008, 9, 17.
    176. Zhang, Y.; So, M.-k.; Loening, A. M.; Yao, H.; Gambhir, S. S.; Rao, J., HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum Dots. Angew. Chem. Int. Ed. Engl. 2006, 118, 5058-5062.
    177. Hodneland, C. D.; Lee, Y. S.; Min, D. H.; Mrksich, M., Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5048-5052.
    178. Kindermann, M.; George, N.; Johnsson, N.; Johnsson, K., Covalent and selective immobilization of fusion proteins. J. Am. Chem. Soc. 2003, 125, 7810-7811.
    179. Sielaff, I.; Arnold, A.; Godin, G.; Tugulu, S.; Klok, H. A.; Johnsson, K., Protein function microarrays based on self-immobilizing and self-labeling fusion proteins. Chembiochem 2006, 7, 194-202.
    180. Kufer, S. K.; Dietz, H.; Albrecht, C.; Blank, K.; Kardinal, A.; Rief, M.; Gaub, H. E., Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy. Eur. Biophys. J. 2005, 35, 72-78.
    181. Kamiya, N.; Doi, S.; Tanaka, Y.; Ichinose, H.; Goto, M., Functional immobilization of recombinant alkaline phosphatases bearing a glutamyl donor substrate peptide of microbial transglutaminase. J Biosci Bioeng 2007, 104, 195-199.
    182. Chan, L.; Cross, H. F.; She, J. K.; Cavalli, G.; Martins, H. F.; Neylon, C., Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation. PLoS One 2007, 2, e1164.
    183. Lee, S. J.; Park, J. P.; Park, T. J.; Lee, S. Y.; Lee, S.; Park, J. K., Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 2005, 77, 5755-5759.
    184. Wu, H.; Hu, Z.; Liu, X. Q., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 9226-9231.
    185. Giriat, I.; Muir, T. W., Protein semi-synthesis in living cells. J. Am. Chem. Soc. 2003, 125, 7180-7181.
    186. Schwartz, E. C.; Muir, T. W.; Tyszkiewicz, A. B., "The splice is right": how protein splicing is opening new doors in protein science. Chem. Commun. 2003, 2087-2090.
    187. Kwon, Y.; Coleman, M. A.; Camarero, J. A., Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew. Chem. Int. Ed. Engl. 2006, 45, 1726-1729.
    188. Takeda, S.; Tsukiji, S.; Nagamune, T., Site-specific conjugation of oligonucleotides to the C-terminus of recombinant protein by expressed protein ligation. Bioorg. Med. Chem. Lett. 2004, 14, 2407-2410.
    189. Camarero, J. A.; Kwon, Y.; Coleman, M. A., Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for "protein chip" fabrication. J Am Chem Soc 2004, 126, 14730-14731.
    190. Girish, A.; Sun, H.; Yeo, D. S.; Chen, G. Y.; Chua, T. K.; Yao, S. Q., Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg. Med. Chem. Lett. 2005, 15, 2447-2451.
    191. Kalia, J.; Abbott, N. L.; Raines, R. T., General method for site-specific protein immobilization by Staudinger ligation. Bioconjug. Chem. 2007, 18, 1064-1069.
    192. Watzke, A.; Kohn, M.; Gutierrez-Rodriguez, M.; Wacker, R.; Schroder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; Waldmann, H., Site-selective protein immobilization by Staudinger ligation. Angew. Chem. Int. Ed. Engl. 2006, 45, 1408-1412.
    193. Watzke, A.; Gutierrez-Rodriguez, M.; Kohn, M.; Wacker, R.; Schroeder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; Waldmann, H., A generic building block for C- and N-terminal protein-labeling and protein-immobilization. Bioorg. Med. Chem. 2006, 14, 6288-6306.
    194. de Araújo, A. D.; Palomo, J. M.; Cramer, J.; Köhn, M.; Schröder, H.; Wacker, R.; Niemeyer, C.; Alexandrov, K.; Waldmann, H., Diels-Alder ligation and surface immobilization of proteins. Angew. Chem. Int. Ed. Engl. 2006, 45, 296-301.
    195. Lin, P. C.; Ueng, S. H.; Tseng, M. C.; Ko, J. L.; Huang, K. T.; Yu, S. C.; Adak, A. K.; Chen, Y. J.; Lin, C. C., Site-specific protein modification through Cu(I)-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew. Chem. Int. Ed. Engl. 2006, 45, 4286-4290.
    196. Turkova, J., Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 11-31.
    197. Fleminger, G.; Hadas, E.; Wolf, T.; Solomon, B., Oriented immobilization of periodate-oxidized monoclonal antibodies on amino and hydrazide derivatives of Eupergit C. Appl. Biochem. Biotechnol. 1990, 23, 123-137.
    198. Solomon, B.; Koppel, R.; Schwartz, F.; Fleminger, G., Enzymic oxidation of monoclonal antibodies by soluble and immobilized bifunctional enzyme complexes. J. Chromatogr. 1990, 510, 321-329.
    199. Lu, B.; Smyth, M. R.; O'Kennedy, R., Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 1996, 121, 29R-32R.
    200. Johnson, C. P.; Jensen, I. E.; Prakasam, A.; Vijayendran, R.; Leckband, D., Engineered protein a for the orientational control of immobilized proteins. Bioconjug. Chem. 2003, 14, 974-978.
    201. Tanaka, G.; Funabashi, H.; Mie, M.; Kobatake, E., Fabrication of an antibody microwell array with self-adhering antibody binding protein. Anal. Biochem. 2006, 350, 298-303.
    202. Ha, T. H.; Jung, S. O.; Lee, J. M.; Lee, K. Y.; Lee, Y.; Park, J. S.; Chung, B. H., Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface. Anal. Chem. 2007, 79, 546-556.
    203. Jung, Y.; Lee, J. M.; Jung, H.; Chung, B. H., Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal Chem 2007, 79, 6534-6541.
    204. Jin, S.; Cheng, Y.; Reid, S.; Li, M.; Wang, B., Carbohydrate recognition by boronolectins, small molecules, and lectins. Med. Res. Rev. 2009.
    205. Yan, J.; Fang, H.; Wang, B., Boronolectins and fluorescent boronolectins: an examination of the detailed chemistry issues important for the design. Med. Res. Rev. 2005, 25, 490-520.
    206. Hall, D. G., Structure, properties, and preparation of boronic acid derivatives. Overview of their reactions and applications. In Boronic acid., First ed.; Hall, D. G., Ed. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; Vol. Weinheim, pp 1-99.
    207. Snyder, H. R.; Kuck, J. A.; Johnson, J. R., Organoboron compounds, and the study of reaction mechanisms. Primary aliphatic boronic acids. J. Am. Chem. Soc. 1938, 60, 105-111.
    208. Tokunaga, Y.; Ueno, H.; Shimomura, Y.; Seo, T., Formation of boroxine: Its stability and thermodynamic parameters in solution. Heterocycles 2002, 57, 787-790.
    209. Tokunaga, Y.; Ueno, H.; Shimomura, Y., Formation of hetero-boroxines: Dynamic combinatorial libraries generated through trimerization of pairs of arylboronic acids. Heterocycles 2007, 74, 219-223.
    210. Springsteen, G.; Wang, B., A detailed examination of boronic acid–diol complexation Tetrahedron 2002, 58, 5291-5300.
    211. Lorand, J. P.; Edwards, J. O., Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem. 1959, 24, 769-774.
    212. Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears Tetrahedron 2004, 60, 11205-11209.
    213. Wang, W.; Gao, X.; Wang, B., Boronic acid-based sensors for carbohydrates. Current Organic Chemistry 2002, 6, 1285-1317.
    214. James, T. D., Boronic acid-based receptors and sensors for saccharides. In Boronic acid., Hall, D. G., Ed. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 441-479.
    215. Tony D. James, K. R. A. S. S. S. S., Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angewandte Chemie International Edition in English 1996, 35, 1910-1922.
    216. Dowlut, M.; Hall, D. G., An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 2006, 128, 4226-4227.
    217. Edwards, N. Y.; Sager, T. W.; McDevitt, J. T.; Anslyn, E. V., Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J. Am. Chem. Soc. 2007, 129, 13575-13583.
    218. Jelinek, R.; Kolusheva, S., Carbohydrate biosensors. Chem. Rev. 2004, 104, 5987-6015.
    219. Sorensen, M. D.; Martins, R.; Hindsgaul, O., Assessing the terminal glycosylation of a glycoprotein by the naked eye. Angew. Chem. Int. Ed. Engl. 2007, 46, 2403-2407.
    220. Aslan, K.; Zhang, J.; Lakowicz, J. R.; Geddes, C. D., Saccharide sensing using gold and silver nanoparticles--a review. J Fluoresc 2004, 14, 391-400.
    221. Zhang, J.; Geddes, C. D.; Lakowicz, J. R., Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle. Anal Biochem 2004, 332, 253-260.
    222. Ivanov, A. E.; Galaev, I. Y.; Mattiasson, B., Interaction of sugars, polysaccharides and cells with boronate-containing copolymers: from solution to polymer brushes. J. Mol. Recognit. 2006, 19, 322-331.
    223. Ivanov, A. E.; Shiomori, K.; Kawano, Y.; Galaev, I. Y.; Mattiasson, B., Effects of polyols, saccharides, and glycoproteins on thermoprecipitation of phenylboronate-containing copolymers. Biomacromolecules 2006, 7, 1017-1024.
    224. Chen, W.; Leung, V.; Kroener, H.; Pelton, R., Polyvinylamine−phenylboronic acid adhesion to cellulose hydrogel. Langmuir 2009, 25, 6863-6868.
    225. Notley, S. M.; Chen, W.; Pelton, R., Extraordinary adhesion of phenylboronic acid derivatives of polyvinylamine to wet cellulose: A colloidal probe microscopy investigation. Langmuir 2009, 25, 6898-6904.
    226. Liu, X. C.; Scouten, W. H., Boronate affinity chromatography. Methods Mol Biol 2000, 147, 119-128.
    227. Bergold, A. A.; Scouten, W. H., Borate chromatography. In Solid phase biochemistry (analytical and synthetic methods), Scouten, W. H., Ed. Wiley: New York, 1983; pp 149-187.
    228. Liu, X.-C.; Scouten, W. H., Boronate affinity chromatography. In Handbook of affinity chromatography, Hage, D. S., Ed. CRC Press of Taylor & Francis LLC.: 2006; Vol. 92, pp 215-231.
    229. Liu, X.-C., Boronic acids as ligands for affinity chromatography. Chinese Journal of Chromatography 2006, 24, 73-80.
    230. Liu, X. C., Boronic acids as ligands for affinity chromatography. Se Pu 2006, 24, 73-80.
    231. Gerard, C., Purification of glycoproteins. Methods Enzymol. 1990, 182, 529-539.
    232. Liu, X. C.; Scouten, W. H., Studies on oriented and reversible immobilization of glycoprotein using novel boronate affinity gel. J Mol Recognit 1996, 9, 462-467.
    233. Moiz, B.; Hashmi, M. R.; Sadaf, S., Performance evaluation of ion exchange and affinity chromatography for HbA1c estimation in diabetic patients with HbD: a study of 129 samples. Clin. Biochem. 2008, 41, 1204-1210.
    234. Ahern, J.; Grove, N.; Strand, T.; Wesche, J.; Seibert, C.; Brenneman, A. T.; Tamborlane, W. V., The impact of the Trial Coordinator in the Diabetes Control and Complications Trial (DCCT). The DCCT Research Group. Diabetes Educ. 1993, 19, 509-512.
    235. UKPDS-Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352, 837-853.
    236. Peterson, K. P.; Pavlovich, J. G.; Goldstein, D.; Little, R.; England, J.; Peterson, C. M., What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clin. Chem. 1998, 44, 1951-1958.
    237. Yue, D. K.; McLennan, S.; Church, D. B.; Turtle, J. R., The measurement of glycosylated hemoglobin in man and animals by aminophenylboronic acid affinity chromatography. Diabetes 1982, 31, 701-705.
    238. Herold, D. A.; Boyd, J. C.; Bruns, D. E.; Emerson, J. C.; Burns, K. G.; Bray, R. E.; Vandenhoff, G. E.; Freedlender, A. E.; Fortier, G. A.; Pohl, S. L.; et al., Measurement of glycosylated hemoglobins using boronate affinity chromatography. Ann. Clin. Lab. Sci. 1983, 13, 482-488.
    239. Fluckiger, R.; Woodtli, T.; Berger, W., Quantitation of glycosylated hemoglobin by boronate affinity chromatography. Diabetes 1984, 33, 73-76.
    240. Stirk, H.; Allen, K. R., Measurement of glycated haemoglobin by boronate-affinity high-pressure liquid chromatography. Ann. Clin. Biochem. 1999, 36 ( Pt 2), 233-234.
    241. Li, Y.; Jeppsson, J. O.; Jornten-Karlsson, M.; Linne Larsson, E.; Jungvid, H.; Galaev, I. Y.; Mattiasson, B., Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 776, 149-160.
    242. Willey, D. G.; Rosenthal, M. A.; Caldwell, S., Glycosylated haemoglobin and plasma glycoprotein assays by affinity chromatography. Diabetologia 1984, 27, 56-58.
    243. Dutton, C. J.; Parvin, C. A.; Gronowski, A. M., Measurement of glycated hemoglobin percentages for use in the diagnosis and monitoring of diabetes mellitus in nonhuman primates. Am. J. Vet. Res. 2003, 64, 562-568.
    244. Li, Y. C.; Larrson, E. L.; Jungvid, H.; Galaev, I. Y.; Mattiasson, B., Shielding of protein-boronate interactions during boronate chromatography of neoglycoproteins. J. Chromatogr. A 2001, 909, 137-145.
    245. Monzo, A.; Bonn, G. K.; Guttman, A., Boronic acid-lectin affinity chromatography. 1. Simultaneous glycoprotein binding with selective or combined elution. Anal. Bioanal. Chem. 2007, 389, 2097-2102.
    246. Monzo, A.; Olajos, M.; De Benedictis, L.; Rivera, Z.; Bonn, G. K.; Guttman, A., Boronic acid lectin affinity chromatography (BLAC). 2. Affinity micropartitioning-mediated comparative glycosylation profiling. Anal. Bioanal. Chem. 2008, 392, 195-201.
    247. Wang, Z.; Tu, Y.; Liu, S., Electrochemical immunoassay for [alpha]-fetoprotein through a phenylboronic acid monolayer on gold. Talanta 2008, 77, 815-821.
    248. Wu, Y.; Liu, S., Immunosensing system for alpha-fetoprotein through boronate immunoaffinity column in combination with flow injection chemiluminescence. The Analyst 2009, 134, 230-235.
    249. Halámek, J.; Wollenberger, U.; Stöcklein, W. F. M.; Warsinke, A.; Scheller, F. W., Signal amplification in immunoassays using labeling via boronic acid binding to the sugar moiety of immunoglobulin G: Proof of concept for glycated hemoglobin. Analytical Letters 2007, 40, 1434 - 1444.
    250. Lee, J. H.; Kim, Y.; Ha, M. Y.; Lee, E. K.; Choo, J., Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1456-1460.
    251. Sparbier, K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M., Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 2005, 16, 407-413.
    252. Preinerstorfer, B.; Lammerhofer, M.; Lindner, W., Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci 2009, 32, 1673-1685.
    253. Zhou, W.; Yao, N.; Yao, G.; Deng, C.; Zhang, X.; Yang, P., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun. 2008, 5577-5579.
    254. Xu, Y.; Wu, Z.; Zhang, L.; Lu, H.; Yang, P.; Webley, P. A.; Zhao, D., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem. 2009, 81, 503-508.
    255. Liua, S.; Bakovica, L.; Chen, A., Specific binding of glycoproteins with poly(aniline boronic acid) thin film Journal of Electroanalytical Chemistry 2006, 591, 210-216.
    256. Gontarev, S.; Shmanai, V.; Frey, S. K.; Kvach, M.; Schweigert, F. J., Application of phenylboronic acid modified hydrogel affinity chips for high-throughput mass spectrometric analysis of glycated proteins. Rapid Commun. Mass Spectrom. 2007, 21, 1-6.
    257. Wautier, J. L.; Guillausseau, P. J., Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001, 27, 535-542.
    258. Thomas, M. C.; Forbes, J. M.; MacIsaac, R.; Jerums, G.; Cooper, M. E., Low-molecular weight advanced glycation end products: markers of tissue AGE accumulation and more? Ann. N. Y. Acad. Sci. 2005, 1043, 644-654.
    259. Lis, H.; Sharon, N., Lectins as molecules and as tools. Annu. Rev. Biochem. 1986, 55, 35-67.
    260. Rao, S. V.; Anderson, K. W.; Bachas, L. G., Oriented immobilization of proteins. Microchimica Acta 1998, 128, 127-143.
    261. Pyrohova, L. V.; Starodub, M. F., Immobilization of immunoglobulins using lectins with an immune sensor method based on surface plasmon resonance. Ukr. Biokhim. Zh. 2002, 74, 45-50.
    262. Zayats, M.; Katz, E.; Willner, I., Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. J. Am. Chem. Soc. 2002, 124, 14724-14735.
    263. Zayats, M.; Katz, E.; Willner, I., Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer. J Am Chem Soc 2002, 124, 2120-2121.
    264. Kanayama, N.; Kitano, H., Interfacial recognition of sugars by boronic acid-carrying self-sssembled monolayer. Langmuir 2000, 16, 577-583.
    265. Abad, J. M.; Velez, M.; Santamaria, C.; Guisan, J. M.; Matheus, P. R.; Vazquez, L.; Gazaryan, I.; Gorton, L.; Gibson, T.; Fernandez, V. M., Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic Acid monolayers. J. Am. Chem. Soc. 2002, 124, 12845-12853.
    266. Seong, S. Y.; Choi, C. Y., Current status of protein chip development in terms of fabrication and application. Proteomics 2003, 3, 2176-2189.
    267. Wang, S. Y.; Hsu, M. L.; Hsu, H. C.; Tzeng, C. H.; Lee, S. S.; Shiao, M. S.; Ho, C. K., The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 1997, 70, 699-705.
    268. Paterson, R. R., Ganoderma - a therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985-2001.
    269. Lin, K. I.; Kao, Y. Y.; Kuo, H. K.; Yang, W. B.; Chou, A.; Lin, H. H.; Yu, A. L.; Wong, C. H., Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. J. Biol. Chem. 2006, 281, 24111-24123.
    270. Hsu, H. Y.; Hua, K. F.; Lin, C. C.; Lin, C. H.; Hsu, J.; Wong, C. H., Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J. Immunol. 2004, 173, 5989-5999.
    271. Wang, Y. Y.; Khoo, K. H.; Chen, S. T.; Lin, C. C.; Wong, C. H.; Lin, C. H., Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem. 2002, 10, 1057-1062.
    272. Sharon, N., Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007, 282, 2753-2764.
    273. Barondes, S. H., Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci. 1988, 13, 480-482.
    274. Drickamer, K., Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 1988, 263, 9557-9560.
    275. Weis, W. I.; Taylor, M. E.; Drickamer, K., The C-type lectin superfamily in the immune system. Immunol. Rev. 1998, 163, 19-34.
    276. Cambi, A.; Figdor, C. G., Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol. 2003, 15, 539-546.
    277. Cambi, A.; Koopman, M.; Figdor, C. G., How C-type lectins detect pathogens. Cell. Microbiol. 2005, 7, 481-488.
    278. Tomizaki, K. Y.; Usui, K.; Mihara, H., Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 2005, 6, 782-799.
    279. Hultschig, C.; Kreutzberger, J.; Seitz, H.; Konthur, Z.; Bussow, K.; Lehrach, H., Recent advances of protein microarrays. Curr. Opin. Chem. Biol. 2006, 10, 4-10.
    280. Uttamchandani, M.; Walsh, D. P.; Yao, S. Q.; Chang, Y. T., Small molecule microarrays: recent advances and applications. Curr. Opin. Chem. Biol. 2005, 9, 4-13.
    281. Camarero, J. A., Recent developments in the site-specific immobilization of proteins onto solid supports. Biopolymers 2008, 90, 450-458.
    282. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. Science 2001, 293, 2101-2105.
    283. Lesaicherre, M. L.; Lue, R. Y.; Chen, G. Y.; Zhu, Q.; Yao, S. Q., Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 2002, 124, 8768-8769.
    284. Kohn, M.; Breinbauer, R., The Staudinger ligation-a gift to chemical biology. Angew. Chem. Int. Ed. Engl. 2004, 43, 3106-3116.
    285. Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T., Site-specific protein immobilization by Staudinger ligation. J. Am. Chem. Soc. 2003, 125, 11790-11791.
    286. Gauchet, C.; Labadie, G. R.; Poulter, C. D., Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J. Am. Chem. Soc. 2006, 128, 9274-9275.
    287. Hage, D. S., Periodate oxidation of antibodies for site-selective immobilization in immunoaffinity chromatography. Methods Mol. Biol. 2000, 147, 69-82.
    288. Jung, Y.; Jeong, J. Y.; Chung, B. H., Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697-701.
    289. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S., Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. Engl. 1996, 35, 1910-1922.
    290. Pilobello, K. T.; Mahal, L. K., Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 2007, 11, 300-305.
    291. Brown, G. D., Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006, 6, 33-43.
    292. Wong, C.-H.; Hsieh, S.-L.; Hsu, T.-L.; Cheng, S.-C.; Chen, S.-T. Methods and reagents for the analysis and purification of polysaccharides. US 2007/0072247 A1, Mar. 29, 2007, 2007.
    293. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    294. Willment, J. A.; Gordon, S.; Brown, G. D., Characterization of the human beta -glucan receptor and its alternatively spliced isoforms. J. Biol. Chem. 2001, 276, 43818-43823.
    295. Cheung, C. L.; Camarero, J. A.; Woods, B. W.; Lin, T.; Johnson, J. E.; De Yoreo, J. J., Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 2003, 125, 6848-6849.
    296. Stolowitz, M. L.; Ahlem, C.; Hughes, K. A.; Kaiser, R. J.; Kesicki, E. A.; Li, G.; Lund, K. P.; Torkelson, S. M.; Wiley, J. P., Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjug. Chem. 2001, 12, 229-239.
    297. Wiley, J. P.; Hughes, K. A.; Kaiser, R. J.; Kesicki, E. A.; Lund, K. P.; Stolowitz, M. L., Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography. Bioconjug. Chem. 2001, 12, 240-250.
    298. Springer, A. L.; Gall, A. S.; Hughes, K. A.; Kaiser, R. J.; Li, G.; Lund, K. P., Salicylhydroxamic acid functionalized affinity membranes for specific immobilization of proteins and oligonucleotides. J Biomol Tech 2003, 14, 183-190.
    299. Nagaoka, M.; Akaike, T., Single amino acid substitution in the mouse IgG1 Fc region induces drastic enhancement of the affinity to protein A. Protein Eng. 2003, 16, 243-245.
    300. Goward, C. R.; Murphy, J. P.; Atkinson, T.; Barstow, D. A., Expression and purification of a truncated recombinant streptococcal protein G. Biochem. J. 1990, 267, 171-177.
    301. Gao, D.; McBean, N.; Schultz, J. S.; Yan, Y.; Mulchandani, A.; Chen, W., Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J. Am. Chem. Soc. 2006, 128, 676-677.
    302. Daws, M. R.; Sullam, P. M.; Niemi, E. C.; Chen, T. T.; Tchao, N. K.; Seaman, W. E., Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 2003, 171, 594-599.
    303. Brown, J.; O'Callaghan, C. A.; Marshall, A. S.; Gilbert, R. J.; Siebold, C.; Gordon, S.; Brown, G. D.; Jones, E. Y., Structure of the fungal beta-glucan-binding immune receptor dectin-1: implications for function. Protein Sci. 2007, 16, 1042-1052.
    304. Kato, Y.; Adachi, Y.; Ohno, N., Contribution of N-linked oligosaccharides to the expression and functions of beta-glucan receptor, Dectin-1. Biol. Pharm. Bull. 2006, 29, 1580-1586.
    305. Krapp, S.; Mimura, Y.; Jefferis, R.; Huber, R.; Sondermann, P., Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 2003, 325, 979-989.
    306. Taylor, M. E.; Drickamer, K., Introduction to glycobiology. Oxford University Press: New York, 2006.
    307. Larsen, K.; Thygesen, M. B.; Guillaumie, F.; Willats, W. G.; Jensen, K. J., Solid-phase chemical tools for glycobiology. Carbohydr Res 2006, 341, 1209-1234.
    308. Chen, M.-L.; Adak, A. K.; Yeh, N.-C.; Yang, W.-B.; Chuang, Y.-J.; Wong, C.-H.; Hwang, K.-C.; Hwu, J.-R. R.; Hsieh, S.-L.; Lin, C.-C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem. Int. Ed. Engl. 2008, 47, 8627-8630.
    309. Mateo, C.; Grazu, V.; Palomo, J. M.; Lopez-Gallego, F.; Fernandez-Lafuente, R.; Guisan, J. M., Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2007, 2, 1022-1033.
    310. Mateo, C.; Fernandez-Lorente, G.; Abian, O.; Fernandez-Lafuente, R.; Guisan, J. M., Multifunctional epoxy supports: a new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules 2000, 1, 739-745.
    311. Kuo, Y.-Y.; Lin, C.-C. α-2,3-Sialyltransferase C-terminal modification and immobilization. National Tsing-Hua University, Hsinchu, 2008.
    312. Lim, D. V.; Simpson, J. M.; Kearns, E. A.; Kramer, M. F., Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 2005, 18, 583-607.
    313. Gooding, J. J., Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Anal. Chim. Acta 2006, 559, 137-151.
    314. Grieshaber, D.; MacKenzie, R.; Voros, J.; Reimhult, E., Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400-1458.
    315. Iqbal, S. S.; Mayo, M. W.; Bruno, J. G.; Bronk, B. V.; Batt, C. A.; Chambers, J. P., A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 2000, 15, 549-578.
    316. Nakamura, H.; Karube, I., Current research activity in biosensors. Anal. Bioanal. Chem. 2003, 377, 446-468.
    317. Altschuh, D.; Oncul, S.; Demchenko, A. P., Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J. Mol. Recognit. 2006, 19, 459-477.
    318. Neufeld, J. D.; Wagner, M.; Murrell, J. C., Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 2007, 1, 103-110.
    319. Edwards, K. A.; Baeumner, A. J., Liposomes in analyses. Talanta 2006, 68, 1421-1431.
    320. Li, X.-M.; Yang, X.-Y.; Zhang, S.-S., Electrochemical enzyme immunoassay using model labels. TrAC Trends Anal. Chem. 2008, 27, 543-553.
    321. Zhang, H.; Zhao, Q.; Li, X. F.; Le, X. C., Ultrasensitive assays for proteins. Analyst 2007, 132, 724-737.
    322. Christof, M. N., Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. Engl. 2001, 40, 4128-4158.
    323. Wanekaya, A. K.; Chen, W.; Mulchandani, A., Recent biosensing developments in environmental security. J. Environ. Monit. 2008, 10, 703-712.
    324. Cooper, M. A., Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 2003, 377, 834-842.
    325. Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.
    326. Eugenii Katz, I. W., Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl. 2004, 43, 6042-6108.
    327. Chen, Y. J.; Chen, S. H.; Chien, Y. Y.; Chang, Y. W.; Liao, H. K.; Chang, C. Y.; Jan, M. D.; Wang, K. T.; Lin, C. C., Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. Chembiochem 2005, 6, 1169-1173.
    328. Chien, Y. Y.; Jan, M. D.; Adak, A. K.; Tzeng, H. C.; Lin, Y. P.; Chen, Y. J.; Wang, K. T.; Chen, C. T.; Chen, C. C.; Lin, C. C., Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. Chembiochem 2008, 9, 1100-1109.
    329. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884-1886.
    330. Christof M. Niemeyer, B. e. C., DNA-directed functionalization of colloidal gold with proteins. Angew. Chem. Int. Ed. Engl. 2001, 40, 3685-3688.
    331. de la Fuente, J. M.; Penades, S., Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. Biochim. Biophys. Acta 2006, 1760, 636-651.
    332. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, G. F.; Chen, Y. C.; Wu, Y. C.; Chen, C. C., Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem. Commun. 2003, 2920-2921.
    333. Mathai Mammen, S.-K. C. G. M. W., Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl. 1998, 37, 2754-2794.
    334. Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A., Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626-634.
    335. Schofield, C. L.; Haines, A. H.; Field, R. A.; Russell, D. A., Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 2006, 22, 6707-6711.
    336. Hone, D. C.; Haines, A. H.; Russell, D. A., Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 2003, 19, 7141-7144.
    337. Zhao, W.; Brook, M. A.; Li, Y., Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 2008, 9, 2363-2371.
    338. Gupta, S.; Huda, S.; Kilpatrick, P. K.; Velev, O. D., Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays. Anal. Chem. 2007, 79, 3810-3820.
    339. Holgate, C. S.; Jackson, P.; Cowen, P. N.; Bird, C. C., Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J. Histochem. Cytochem. 1983, 31, 938-944.
    340. Gao, J.; Liu, D.; Wang, Z., Microarray-based study of carbohydrate protein binding by gold nanoparticle probes. Anal. Chem. 2008, 80, 8822-8827.
    341. Yang, M.; Wang, C., Label-free immunosensor based on gold nanoparticle silver enhancement. Anal. Biochem. 2009, 385, 128-131.
    342. Wang, J., Nanomaterial-based amplified transduction of biomolecular interactions. Small 2005, 1, 1036-1043.
    343. David S. Wilson, S. N., Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl. 2003, 42, 494-500.
    344. Sweeney, E. C.; Tonevitsky, A. G.; Temiakov, D. E.; Agapov, II; Saward, S.; Palmer, R. A., Preliminary crystallographic characterization of ricin agglutinin. Proteins 1997, 28, 586-589.
    345. Olsnes, S., The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361-370.
    346. Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J., Ricin poisoning: a comprehensive review. JAMA 2005, 294, 2342-2351.
    347. Ember, L., National security: Securing dual-use biology. Chemical and Engineering News March 15, 2004, 2004, p 11.
    348. Crompton, R.; Gall, D., Georgi Markov--death in a pellet. Med. Leg. J. 1980, 48, 51-62.
    349. Bradberry, S. M.; Dickers, K. J.; Rice, P.; Griffiths, G. D.; Vale, J. A., Ricin poisoning. Toxicol. Rev. 2003, 22, 65-70.
    350. Papaloucas, M.; Papaloucas, C.; Stergioulas, A., Ricin and the assassination of Georgi Markov. Pak. J. Biol. Sci. 2008, 11, 2370-2371.
    351. Knight, B., Ricin-a potent homicidal poison. Br. Med. J. 1979, 1, 350-351.
    352. Weissmann-Brenner, A.; Brenner, B.; Kats, L.; Hourvitz, A., Ricin-from a Bulgarian umbrella to an optional treatment of cancer. Harefuah 2002, 141, 153-156, 222.
    353. Montfort, W.; Villafranca, J. E.; Monzingo, A. F.; Ernst, S. R.; Katzin, B.; Rutenber, E.; Xuong, N. H.; Hamlin, R.; Robertus, J. D., The three-dimensional structure of ricin at 2.8 A. J. Biol. Chem. 1987, 262, 5398-5403.
    354. Wales, R.; Richardson, P. T.; Roberts, L. M.; Woodland, H. R.; Lord, J. M., Mutational analysis of the galactose binding ability of recombinant ricin B chain. J. Biol. Chem. 1991, 266, 19172-19179.
    355. Rutenber, E.; Robertus, J. D., Structure of ricin B-chain at 2.5 A resolution. Proteins 1991, 10, 260-269.
    356. Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K., The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908-5912.
    357. Endo, Y.; Tsurugi, K., The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 1988, 263, 8735-8739.
    358. Sandvig, K.; van Deurs, B., Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J. 2000, 19, 5943-5950.
    359. Ler, S. G.; Lee, F. K.; Gopalakrishnakone, P., Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J. Chromatogr. A 2006, 1133, 1-12.
    360. Olsnes, S., Ricin and ricinus agglutinin, toxic lectins from castor bean. Methods Enzymol. 1978, 50, 330-335.
    361. Roberts, L. M.; Lamb, F. I.; Pappin, D. J.; Lord, J. M., The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 1985, 260, 15682-15686.
    362. Pohl, P.; Antonenko, Y. N.; Evtodienko, V. Y.; Pohl, E. E.; Saparov, S. M.; Agapov, II; Tonevitsky, A. G., Membrane fusion mediated by ricin and viscumin. Biochim. Biophys. Acta 1998, 1371, 11-16.
    363. O'Hare, M.; Roberts, L. M.; Lord, J. M., Biological activity of recombinant Ricinus communis agglutinin A chain produced in Escherichia coli. FEBS Lett. 1992, 299, 209-212.
    364. Citores, L.; Ferreras, J. M.; Iglesias, R.; Carbajales, M. L.; Arias, F. J.; Jimenez, P.; Rojo, M. A.; Girbes, T., Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. Proposal of an extended classification of plant ribosome-inactivating proteins (rRNA N-glycosidases). FEBS Lett. 1993, 329, 59-62.
    365. Enüstün, B. V.; Turkevich, J., Coagulation of colloidal gold. J. Am. Chem. Soc. 1963, 85, 3317-3328.
    366. Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K., Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 2001, 123, 8226-8230.
    367. Dai, Q.; Liu, X.; Coutts, J.; Austin, L.; Huo, Q., A one-step highly sensitive method for DNA detection using dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 8138-8139.
    368. Banerjee, S. S.; Chen, D.-H., Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. 2007, 19, 6345-6349.
    369. Abeylath, S. C.; Turos, E., Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydr. Polym. 2007, 70, 32-37.
    370. Blankenburg, R.; Meller, P.; Ringsdorf, H.; Salesse, C., Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognition. Biochemistry (Mosc). 1989, 28, 8214-8221.
    371. Sandvig, K.; van Deurs, B., Membrane traffic exploited by protein toxins. Annu. Rev. Cell Dev. Biol. 2002, 18, 1-24.
    372. Merritt, E. A.; Hol, W. G., AB5 toxins. Curr. Opin. Struct. Biol. 1995, 5, 165-171.
    373. Dai, Z.; Kawde, A. N.; Xiang, Y.; La Belle, J. T.; Gerlach, J.; Bhavanandan, V. P.; Joshi, L.; Wang, J., Nanoparticle-based sensing of glycan-lectin interactions. J. Am. Chem. Soc. 2006, 128, 10018-10019.
    374. Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 2003, 301, 1884-1886.
    375. Thygesen, M. B.; Sauer, J.; Jensen, K. J., Chemoselective capture of glycans for analysis on gold nanoparticles: carbohydrate oxime tautomers provide functional recognition by proteins. Chemistry 2009, 15, 1649-1660.
    376. Winter, G.; Griffiths, A. D.; Hawkins, R. E.; Hoogenboom, H. R., Making antibodies by phage display technology. Annu. Rev. Immunol. 1994, 12, 433-455.
    377. Ying, X.; Guifang, C.; Pingang, H.; Yuzhi, F., A Review: Electrochemical Aptasensors with Various Detection Strategies. Electroanalysis 2009, 21, 1251-1259.
    378. Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645-647.
    379. Martin-Esteban, A., Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors. Anal. Bioanal. Chem. 2004, 378, 1875.
    380. Sibrian-Vazquez, M.; Spivak, D. A., Molecular imprinting made easy. J. Am. Chem. Soc. 2004, 126, 7827-7833.
    381. Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106-180.
    382. Zhu, Q.; Uttamchandani, M.; Li, D.; Lesaicherre, M. L.; Yao, S. Q., Enzymatic profiling system in a small-molecule microarray. Org. Lett. 2003, 5, 1257-1260.
    383. Bradner, J. E.; McPherson, O. M.; Mazitschek, R.; Barnes-Seeman, D.; Shen, J. P.; Dhaliwal, J.; Stevenson, K. E.; Duffner, J. L.; Park, S. B.; Neuberg, D. S.; Nghiem, P.; Schreiber, S. L.; Koehler, A. N., A robust small-molecule microarray platform for screening cell lysates. Chem. Biol. 2006, 13, 493-504.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE