簡易檢索 / 詳目顯示

研究生: 周哲豪
Chou, Che-Hao
論文名稱: 基於離散哈特利轉換與雙原型濾波器之濾波器組多載波系統的時間同步技術
Time Synchronization for a Filter Bank Multicarrier System Based on the Discrete Hartley Transform and Two Prototype Filters
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 鐘嘉德
Chung, Char-Dir
古聖如
Ku, Sheng-Ju
馮世邁
Phoong, See-May
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 35
中文關鍵詞: 濾波器組多載波離散哈特利轉換扎德奧夫-朱序列時間同步訓練序列
外文關鍵詞: filter bank multicarrier (FBMC), Discrete Hartley transform (DHT), Zadoff-Chu sequence, time synchronization, training sequence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們針對基於離散哈特利轉換 (discrete Hartley transform;DHT) 與雙原型濾波器之濾波器组多載波 (filter bank multicarrier;簡稱FBMC) 系統,提出一時間同步的訓練序列設計方法;我們推導出兩個頻域的訓練序列並且將之連續擺放在資料訊框中,使得對應的時域訓練序列成為一個有加入循環字首 (cyclic prefix) 和循環字尾 (cyclic postfix) 的Zadoff-Chu序列。因為Zadoff-Chu序列具有理想的自相關特性,因此粗略的時間同步 (coarse time synchronization) 可以藉由偵測接收訊號和Zadoff-Chu序列間之交相關函式 (cross-correlation function) 的高峰值而達成;然而,此高峰值不一定總是在第一條通道路徑上,因此進一步精細的時間同步 (fine time estimation) 通常是必要的。經由分析並推導出上述交相關函式的機率密度函數,我們求得一最佳判斷門檻值,以從粗略的時間估測點往回搜尋出第一條通道路徑所對應的時間點,進而完成時間同步。電腦模擬結果顯示,當通道具有較小的延遲擴展 (delay spread) 特性時,粗略時間估測值的均方誤差 (mean-squared error) 效能表現會比較好;另外,所提出之時間同步方法在ITU所規範的Indoor B、Pedestrian B與Vehicular B 通道模擬環境下,分別可達到接近99.5%、99%和97% 的時間同步正確機率。


    In this thesis, we propose a training sequence design for time synchronization in a filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT) and two prototype filters. Two frequency-domain training sequences are derived and placed successively among data frames such that the corresponding time-domain training sequence is a Zadoff-Chu sequence with appropriate cyclic prefix and postfix. Because a Zadoff-Chu sequence possesses an ideal autocorrelation property, coarse time synchronization can be easily achieved by detecting the peak of the cross-correlation function between the received signal and the Zadoff-Chu sequence. However, because the peak point is not always the first channel tap, further fine time synchronization is often necessary. By analyzing the probability density function of the cross-correlation function, we obtain the optimal threshold for searching back for the first channel tap to complete time synchronization. As demonstrated by computer simulation results, the mean-squared error performance of the coarse time estimate is better when the channel has a smaller delay spread. Moreover, the proposed approach achieves near 99.5%, 99%, and 97% of correct time synchronization under the ITU Indoor B, Pedestrian B, and Vehicular B channel models, respectively, for the DHT-based FBMC system.

    Abstract i Contents ii List of Figures iii List of Tables iv I. Introduction 1 II. System Model 4 III. Proposed Time Synchronization Methods 8 A. Vector Representation of DHT-Based FBMC Symbols 10 B. Symbol Overlap Structure with FBMC Symbols of Synchronization Parts 11 C. Formulation of C-Sequence 13 1) Data-Dependent C-Sequence 13 2) Data-Independent C-Sequence 16 D. The Proposed Time-Domain Training Sequence Structure 17 E. Coarse Time Offset Estimation 18 F. Fine Time Synchronization 18 IV. Simulation Results 23 V. Conclusion 32 Appendix 33 References 34

    [1] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amend. 4: Enhancements for Very High Throughput for Operation in Bands Below 6 GHz, IEEE Standard P802.11ac/D6.0, Jul. 2013.
    [2] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
    [3] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS-Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http://www.ict-phydyas.org/.
    [4] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
    [5] M. G. Bellanger, “Specification and design of a prototype filter for filter bank based multicarrier transmission,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Salt Lake City, USA, May 2001, pp. 2417–2420.
    [6] M. Bellanger, “Physical layer for future broadband radio systems,” in Proc. IEEE Radio Wireless Symp. (RWS), New Orleans, Louisiana, USA, Jan. 2010, pp. 436–439.
    [7] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.
    [8] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, vol. 72, no. 8, pp. 1010–1018, Aug. 1984.
    [9] K. Jones, The Regularized Fast Hartley Transform. Dordrecht, The Netherlands: Springer, 2010.
    [10] C.-T. Tuan, “A filter bank multicarrier transmission system based on the discrete Hartley transform,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
    [11] M. Bellanger et al., “FBMC physical layer: A primer,” PHYDYAS, Tech. Rep., Jun. 2010.
    [12] H.-S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
    [13] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun./Jul. 2015, pp. 116–120.
    [14] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
    [15] C. Kim, Y. H. Yun, K. Kim, and J. Y. Seol, “Introduction to QAM-FBMC: From waveform optimization to system design,” IEEE Commun. Mag., vol. 54, no. 11, pp. 66–73, Nov. 2016.
    [16] Q. Bai and J. Nossek, “On the effects of carrier frequency offset on cyclic prefix based OFDM and filter-bank based multicarrier systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Marrakech, Morocco, Jun. 2010, pp. 1–5.
    [17] T. Fusco, A. Petrella, and M. Tanda, “Sensitivity of multi-user filter-bank multicarrier systems to synchronization errors,” in Proc. IEEE Int. Symp. on Commun., Control and Signal Process. (ISCCSP), St. Julian’s, Malta, Mar. 2008, pp. 393–398.
    [18] W. Chung et al., “Synchronization error in QAM-based FBMC system,” in Proc. IEEE Military Commun. Conf. (MILCOM), Baltimore, Maryland, USA, Oct. 2014, pp. 699–705.
    [19] T. Fusco and M. Tanda, “Blind frequency-offset estimation for OFDM/OQAM systems,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1828–1838, May 2007.
    [20] T. Fusco, A. Petrella, and M. Tanda, “Data-aided symbol timing and CFO synchronization for filter bank multicarrier systems,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2705–2715, May 2009.
    [21] W. Chung, C. Kim, S. Choi, and D. Hong, “Synchronization sequence design for FBMC/OQAM systems,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 7199–7211, Oct. 2016.
    [22] M. Hua, M. Wang, K. Yang, and K. Zou, “Analysis of the frequency offset effect on Zadoff-Chu sequence timing performance,” IEEE Trans. Commun., vol. 62, no. 11, pp. 4024–4039, Nov. 2014.
    [23] C.-L. Wang and H.-C. Wang, “On joint fine time adjustment and channel estimation for OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4940–4944, Oct. 2009.
    [24] Guidelines for Evaluations of Radio Transmission Technologies for IMT-2000, ITU-R M.1225, 1997.

    QR CODE