簡易檢索 / 詳目顯示

研究生: 陳貞志
Chen-Chih Chen
論文名稱: 單一粒徑分佈二氧化矽膠體和銀-二氧化矽核-殼結構奈米粒子的製備及應用
Preparation and applications of mono-sized distribution silica colloids and Ag-SiO2 core-shell structural nanoparticles
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 167
中文關鍵詞: 二氧化矽核-殼結構
外文關鍵詞: silver, silica, core-shell structure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功製備出單一分佈的二氧化矽膠體和銀-二氧化矽核-殼結構的奈米粒子。藉由無機二氧化矽耐高溫的特性,銀-二氧化矽核-殼結構的奈米粒子可應用於須經過高溫加工程序的抗菌領域和甲醇部份氧化成甲醛的觸媒催化反應上。
    在單一分佈二氧化矽微粒的製備上,藉由一系列批次程序建立了次微米二氧化矽之粒徑及粒徑分佈的製程視窗,並整理得一經驗式。混合兩種尺寸的二氧化矽種子成長實驗,證明二氧化矽顆粒各自獨立成長與顆粒之尺寸大小無關。而粒徑分佈自我窄化之現象乃是由於整體粒徑變大所造成的。在種子成長製程中為了避免新的成核產生而破壞原本的單一分佈,當使用的種子尺寸較大時則所需之溶液中種子總表面積也較大。種子成長過程中,新成核的發生是由於反應中間物還沒接觸到種子的表面之前,反應中間物已經互相碰撞形成新的成核點。而新成核的發生與否則是決定於溶液中種子與種子之間的距離,與種子尺寸大小無關。
    在製備銀-二氧化矽核-殼結構奈米粒子上。利用溶膠-凝膠法,二氧化矽可均勻被覆在奈米銀顆粒的表面。TEM結果顯示二氧化矽殼層厚度均一並不會受到奈米銀顆粒尺寸大小的影響。而二氧化矽殼層的厚度則會影響奈米銀的表面電漿共振波長。此外結構分析顯示聚乙烯吡咯酮高分子(PVP)不僅包覆在奈米銀的表面,同時也分散到二氧化矽殼層裡面。因此經過高溫熱處理將PVP燒除後,可獲得多孔的二氧化矽殼層。高分子PVP的含量與銀-二氧化矽核-殼奈米粒子的比表面積之間的關係也成功地建立。在熱穩定性方面,二氧化矽殼層可維持銀-二氧化矽核-殼奈米粒子的整體外觀形狀高達1000℃的高溫,即使二氧化矽的殼層厚度只有25奈米的厚度。
    奈米銀已知為一廣效型抗菌劑。在二氧化矽殼層的保護下,銀-二氧化矽核-殼奈米粒子可作為須經過高溫加工程序之產品的抗菌添加劑。抗菌實驗顯示對於革蘭氏陰性菌(大腸桿菌)和革蘭氏陽性菌(金黃色葡萄球菌)都具有抗菌效果。
    此外銀-二氧化矽核-殼結構奈米粒子也可作為觸媒使用,應用在甲醇部份氧化成甲醛的觸媒催化反應上。催化反應是部份氧化反應(CH3OH + 1/2 O2 → HCHO + H2O)與直接脫氫反應(CH3OH → HCHO + H2)同時進行。在無氧環境下觸媒可催化甲醇進行直接脫氫反應。反應溫度升高則可增加甲醇轉化率,同時提高甲醛選擇率並降低二氧化碳選擇率。然而太高的反應溫度或太厚的二氧化矽殼層會面臨到質傳限制,導致甲醛進一步分解成一氧化碳和氫氣。降低氧氣濃度則可提高甲醛的選擇率,但同時也降低了甲醇的轉化率。在最佳的反應條件下,甲醛產率可達91%。與工業上的銀觸媒比較,反應溫度可下降約100℃,具有節省反應器材料成本的優點。


    In this study, the monodispersed silica colloids and silver-silica core-shell structural nanoparticles have been successfully prepared. In particular, the high temperature resistant nature of inorganic silica shell enables the silver-silica core-shell nanoparticles applicable to antibacterial field where high temperature treatment procedure is required and to formaldehyde synthesis from partial oxidation of methanol as catalyst.
    In the preparation of monodispersed silica colloids, the process windows of submicron silica colloids have been established and were expressed as an empirical equation. The mixed silica seeded growth experiments with two particle sizes show that silica seeds grow independently and irrelevant to seed size. The self-sharpening effect of particle size distribution is resulted from the increasing of average diameter. In the seeded growth process, in order to avoid the new nucleation, which would destroy the original monodispersity, when larger silica seeds were used, it requires large total seed surface area in the solution. During the seed growth, new nucleation occurs via aggregation of reaction intermediates to form nuclei before these intermediates diffuse to the surface of seeds. New nucleation is determined by the distance between seeds and irrelevant to seed size.
    In the preparation of silver-silica core-shell structural nanoparticles (Ag@SiO2), using sol-gel method, silica can coat uniformly on the surface of silver nanoparticles. TEM results indicate that the thickness of silica shell was uniform and not affected by the particle size of silver nanoparticles. The wavelength of surface plasomn resonance of silver nanoparticles was influenced by silica shell thickness. Moreover, structural analysis indicate that polyvinyl pyrrolidone (PVP) polymer was not only surrounding on silver surface but also dispersed into silica shell. As a result, when PVP is burned off during calcination, a corresponding porous structure will be obtained. The correlation between the specific surface area of Ag@SiO2 particles and PVP quantity in the original silver colloids was established. The silica shell, even at a thickness of 25nm, can maintain the original shape of Ag@SiO2 particles up to 1000℃.
    Nano silver particles were well known as an antibacterial agent. Under the protection of silica shell, Ag@SiO2 particles can be utilized as antibacterial agent for high temperature process without worrying about sintering effect. The antibacterial tests exhibited antibacterial efficiency against both Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus.
    Furthermore, Ag@SiO2 particles can also be utilized as catalyst for formaldehyde synthesis from partial oxidation of methanol. Both partial oxidation reaction (CH3OH + 1/2 O2 → HCHO + H2O) and direct dehydrogenation reaction (CH3OH → HCHO + H2) take place simultaneously. In the oxygen-free condition, Ag@SiO2 catalyst can catalyse the direct dehydrogenation of methanol. Increasing reaction temperature could increase the methanol conversion and formaldehyde selectivity as well as decrease carbon dioxide selectivity. However, higher reaction temperature or thicker silica shell would exhibit mass transfer limitation leading to formaldehyde decomposition to carbon monoxide and hydrogen. Decreasing oxygen concentration can increase formaldehyde selectivity, but also decrease methanol conversion. At the optimal reaction condition, the yield of formaldehyde can reach 91%. Compared with current industrial silver catalyst, the reaction temperature can decrease by about 100℃, which is very beneficial to reactor cost saving.

    1. 前言 1 2. 文獻回顧 3 2.1. 單一分佈二氧化矽微粒 3 2.2. 光子晶體 11 2.2.1. 光子晶體簡介 11 2.2.2. 堆積技術簡介 14 2.3. 核殼結構顆粒 18 2.4. 銀在抗菌上的應用 33 2.4.1. 抗菌劑的分類 34 2.4.2. 抗菌劑的作用原理與機制 35 2.4.3. 奈米銀的抗菌效果 36 2.4.4. 銀在抗菌纖維上的應用 40 2.4.5. 銀在抗菌陶瓷上的應用 44 2.5. 銀在觸媒催化上的應用 50 2.5.1. 乙烯轉化成環氧乙烯 50 2.5.2. 甲醇轉化成甲醛 53 3. 實驗方法 63 3.1. 藥品 63 3.2. 量測設備 63 3.3. 實驗步驟與方法 64 3.3.1. 單一分佈二氧化矽微粒的製備 64 3.3.2. 銀-二氧化矽核殼複合粒子的製備 65 3.3.3. 抗菌實驗 66 3.3.4. 觸媒實驗 66 4. 結果與討論 68 4.1. 單一分佈二氧化矽微粒 68 4.1.1. 批次製備程序 68 4.1.2. 種子成長製備程序 86 4.1.3. 新成核 93 4.1.4. 結論 101 4.2. 銀-二氧化矽核殼複合粒子 102 4.2.1. 奈米金屬銀微粒 102 4.2.2. 銀-二氧化矽核殼複合粒子 105 4.2.3. 結論 120 4.3. 銀-二氧化矽核殼粒子在抗菌上的應用 121 4.3.1. 旋轉塗佈於氧化鋁基材 121 4.3.2. 銀-二氧化矽核殼奈米粒子的抗菌效果 123 4.3.3. 結論 124 4.4. 銀-二氧化矽核殼粒子在觸媒上的應用 127 4.4.1. 觸媒結構分析 128 4.4.2. 觸媒催化反應 139 4.4.3. 結論 151 5. 總結 152 6. 未來展望 154 7. 參考文獻 156

    [1] D. V. Goia and E. Matijevic. "Preparation of monodispersed metal particles" New Journal of Chemistry 22 (1998) 1203-1215.
    [2] W. Stober, A. Fink and E. Bohn. "Controlled growth of monodisperse silica spheres in the micron size range" Journal of Colloid and Interface Science 26 (1968) 62-69.
    [3] C. J. Brink and G. W. Scherer. "Sol-Gel Science" Academic Press (1990)
    [4] S. K. Park, K. D. Kim and H. T. Kim. "Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles" Colloids and Surfaces A-Physicochemical and Engineering Aspects 197 (2002) 7-17.
    [5] A. Vanblaaderen, J. Vangeest and A. Vrij. "Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism" Journal of Colloid and Interface Science 154 (1992) 481-501.
    [6] S. L. Chen, P. Dong, G. H. Yang and J. J. Yang. "Characteristic aspects of formation of new particles during the growth of monosize silica seeds" Journal of Colloid and Interface Science 180 (1996) 237-241.
    [7] D. Nagao, T. Satoh and M. Konno. "A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate" Journal of Colloid and Interface Science 232 (2000) 102-110.
    [8] K. S. Kim, J. K. Kim and W. S. Kim. "Influence of reaction conditions on sol-precipitation process producing silicon oxide particles" Ceramics International 28 (2002) 187-194.
    [9] S. Sadasivan, A. K. Dubey, Y. Z. Li and D. H. Rasmussen. "Alcoholic solvent effect on silica synthesis - NMR and DLS investigation" Journal of Sol-Gel Science and Technology 12 (1998) 5-14.
    [10] H. Boukari, J. S. Lin and M. T. Harris. "Probing the dynamics of the silica nanostructure formation and growth by SAXS" Chemistry of Materials 9 (1997) 2376-2384.
    [11] D. L. Green, S. Jayasundara, Y. F. Lam and M. T. Harris. "Chemical reaction kinetics leading to the first Stober silica nanoparticles - NMR and SAXS investigation" Journal of Non-Crystalline Solids 315 (2003) 166-179.
    [12] P. A. Buining, L. M. LizMarzan and A. P. Philipse. "A simple preparation of small, smooth silica spheres in a seed alcosol for Stober synthesis" Journal of Colloid and Interface Science 179 (1996) 318-321.
    [13] K. S. Kim, J. K. Kim and W. S. Kim. "Silica particle growth in metastable supersaturation solution" Journal of Materials Research 16 (2001) 545-552.
    [14] H. Giesche. "Synthesis of monodispersed silica powders 1. Particle properties and reaction kinetics" Journal of the European Ceramic Society 14 (1994) 189-204.
    [15] H. Giesche. "Synthesis of monodispersed silica powders 2. Controlled growth reaction and continuous production process" Journal of the European Ceramic Society 14 (1994) 205-214.
    [16] K. D. Kim and H. T. Kim. "New process for the preparation of monodispersed, spherical silica particles" Journal of the American Ceramic Society 85 (2002) 1107-1113.
    [17] K. D. Kim and H. T. Kim. "Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch" Journal of Sol-Gel Science and Technology 25 (2002) 183-189.
    [18] S. L. Chen, P. Dong and G. H. Yang. "The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane" Journal of Colloid and Interface Science 189 (1997) 268-272.
    [19] T. Matsoukas and E. Gulari. "Monomer-addition growth with a slow initiation step: A growth-model for silica particles from alkoxides" Journal of Colloid and Interface Science 132 (1989) 13-21.
    [20] G. H. Bogush and C. F. Zukoski. "Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides" Journal of Colloid and Interface Science 142 (1991) 1-18.
    [21] N. K. Raman, M. T. Anderson and C. J. Brinker. "Template-based approaches to the preparation of amorphous, nanoporous silicas" Chemistry of Materials 8 (1996) 1682-1701.
    [22] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck. "Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism" Nature 359 (1992) 710-712.
    [23] S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia. "Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants" Science 269 (1995) 1242-1244.
    [24] P. T. Tanev and T. J. Pinnavaia. "A neutral templating route to mesoporous molecular-sieves" Science 267 (1995) 865-867.
    [25] E. Yablonovitch. "Inhibited spontaneous emission in solid-state physics and electronics" Physical Review Letters 58 (1987) 2059-2062.
    [26] S. John. "Strong localization of photons in certain disordered dielectric superlattices" Physical Review Letters 58 (1987) 2486-2489.
    [27] E. Yablonovitch and T. J. Gmitter. "Photonic band structure: the Face-Centered-Cubic case" Physical Review Letters 63 (1989) 1950-1953.
    [28] 楊志忠. "新世紀奈米級光電材料結構—光子晶體" 物理雙月刊 23 (2001) 647.
    [29] 李奕成和陳家俊. "光子晶體的製作與應用" 自然科學簡訊 14 (2002) 53.
    [30] T. F. Krauss and R. M. De la Rue. "Photonic crystals in the optical regime: past, present and future" Progress in Quantum Electronics 23 (1999) 51-96.
    [31] J. M. Weissman, H. B. Sunkara, A. S. Tse and S. A. Asher. "Thermally switchable periodicities and diffraction from mesoscopically ordered materials" Science 274 (1996) 959-960.
    [32] J. H. Holtz and S. A. Asher. "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials" Nature 389 (1997) 829-832.
    [33] J. H. Holtz, J. S. W. Holtz, C. H. Munro and S. A. Asher. "Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials" Analytical Chemistry 70 (1998) 780-791.
    [34] C. Lopez, L. Vazquez, F. Meseguer, R. Mayoral, M. Ocana and H. Miguez. "Photonic crystal made by close packing SiO2 submicron spheres" Superlattices and Microstructures 22 (1997) 399-404.
    [35] R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado and A. Blanco. "3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure" Advanced Materials 9 (1997) 257-260.
    [36] H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya and L. Vazquez. "Evidence of FCC crystallization of SiO2 nanospheres" Langmuir 13 (1997) 6009-6011.
    [37] A. Blanco, E. Chomski, S. Grabtchak, et al. "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres" Nature 405 (2000) 437-440.
    [38] T. J. Johnson and E. J. Davis. "An analysis of electrophoresis of concentrated suspensions of colloidal particles" Journal of Colloid and Interface Science 215 (1999) 397-408.
    [39] H. J. Wilson, L. A. Pietraszewski and R. H. Davis. "Aggregation of charged particles under electrophoresis or gravity at arbitrary Peclet numbers" Journal of Colloid and Interface Science 221 (2000) 87-103.
    [40] S. H. Park, D. Qin and Y. Xia. "Crystallization of mesoscale particles over large areas" Advanced Materials 10 (1998) 1028-1032.
    [41] S. H. Park and Y. N. Xia. "Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters" Langmuir 15 (1999) 266-273.
    [42] S. H. Park, B. Gates and Y. N. Xia. "A three-dimensional photonic crystal operating in the visible region" Advanced Materials 11 (1999) 462-466.
    [43] B. Gates, D. Qin and Y. N. Xia. "Assembly of nanoparticles into opaline structures over large areas" Advanced Materials 11 (1999) 466-469.
    [44] 陳東煌. "複合奈米粒子的製備與應用" 化工技術 120 (2003) 180-193.
    [45] 陳嘉祈和呂世源. "奈米核殼粒子與奈米中空球之製備與應用" 化工技術 120 (2003) 194-203.
    [46] F. Caruso. "Nanoengineering of particle surfaces" Advanced Materials 13 (2001) 11-22.
    [47] E. Matijevic. "Uniform inorganic colloid dispersions: Achievements and Challenges" Langmuir 10 (1994) 8-16.
    [48] V. V. Hardikar and E. Matijevic. "Coating of nanosize silver particles with silica" Journal of Colloid and Interface Science 221 (2000) 133-136.
    [49] F. Caruso. "Hollow capsule processing through colloidal templating and self-assembly" Chemistry-a European Journal 6 (2000) 413-419.
    [50] E. Matijevic. "Preparation and characterization of well defined powders and their applications in technology" Journal of the European Ceramic Society 18 (1998) 1357-1364.
    [51] P. Davies, G. A. Schurr, P. Meenan, R. D. Nelson, H. E. Bergna, C. S. Brevett and R. H. Goldbaum. "Engineered particle surfaces" Advanced Materials 10 (1998) 1264-1270.
    [52] E. Matijevic. "Preparation and properties of uniform size colloids" Chemistry of Materials 5 (1993) 412-426.
    [53] X. C. Guo and P. Dong. "Multistep coating of thick titania layers on monodisperse silica nanospheres" Langmuir 15 (1999) 5535-5540.
    [54] A. P. Philipse, M. P. B. Vanbruggen and C. Pathmamanoharan. "Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core" Langmuir 10 (1994) 92-99.
    [55] Z. Y. Zhong, Y. Mastai, Y. Koltypin, Y. M. Zhao and A. Gedanken. "Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate" Chemistry of Materials 11 (1999) 2350-2359.
    [56] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos. "Synthesis and properties of biocompatible water-soluble silica-coated CdSe" Journal of Physical Chemistry B 105 (2001) 8861-8871.
    [57] F. Caruso, R. A. Caruso and H. Mohwald. "Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating" Science 282 (1998) 1111-1114.
    [58] F. Caruso, X. Y. Shi, R. A. Caruso and A. Susha. "Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles" Advanced Materials 13 (2001) 740-744.
    [59] K. S. Mayya, D. I. Gittins and F. Caruso. "Gold-titania core-shell nanoparticles by polyelectrolyte complexation with a titania precursor" Chemistry of Materials 13 (2001) 3833-3836.
    [60] L. M. LizMarzan, M. Giersig and P. Mulvaney. "Synthesis of nanosized gold-silica core-shell particles" Langmuir 12 (1996) 4329-4335.
    [61] W. Y. Fu, H. B. Yang, L. X. Chang, M. H. Li, H. Bala, Q. J. Yu and G. T. Zou. "Preparation and characteristics of core-shell structure nickel/silica nanoparticles" Colloids and Surfaces A-Physicochemical and Engineering Aspects 262 (2005) 71-75.
    [62] Z. J. Jiang and C. Y. Liu. "Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere" Journal of Physical Chemistry B 107 (2003) 12411-12415.
    [63] S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas. "Nanoengineering of optical resonances" Chemical Physics Letters 288 (1998) 243-247.
    [64] J. B. Jackson and N. J. Halas. "Silver nanoshells: Variations in morphologies and optical properties" Journal of Physical Chemistry B 105 (2001) 2743-2746.
    [65] M. W. Zhu, G. D. Qian, Z. L. Hong, Z. Y. Wang, X. P. Fan and M. Q. Wang. "Preparation and characterization of silica-silver core-shell structural submicrometer spheres" Journal of Physics and Chemistry of Solids 66 (2005) 748-752.
    [66] C. X. Song, D. B. Wang, G. H. Gu, Y. S. Lin, J. Y. Yang, L. Chen, X. Fu and Z. S. Hu. "Preparation and characterization of silver/TiO2 composite hollow spheres" Journal of Colloid and Interface Science 272 (2004) 340-344.
    [67] K. Kamata, Y. Lu and Y. N. Xia. "Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores" Journal of the American Chemical Society 125 (2003) 2384-2385.
    [68] W. L. Zhang, B. Kohler, E. Oswald, L. Beutin, H. Karch, S. Morabito, A. Caprioli, S. Suerbaum and H. Schmidt. "Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains" Journal of Clinical Microbiology 40 (2002) 4486-4492.
    [69] R. Schmidt, H. Schmidt, P. Kapeller, C. Enzinger, S. Ropele, R. Saurugg and F. Fazekas. "The natural course of MRI white matter hyperintensities" Journal of the Neurological Sciences 203 (2002) 253-257.
    [70] R. C. Advincula. "Surface initiated polymerization from nanoparticle surfaces" Journal of Dispersion Science and Technology 24 (2003) 343-361.
    [71] 呂晃志和蔡宜壽. "銀系無機抗菌材料的開發(上)" 化工資訊與商情 44 (2007) 38-45.
    [72] 呂晃志和蔡宜壽. "銀系無機抗菌材料的開發(下)" 化工資訊與商情 45 (2007) 56-62.
    [73] P. K. Stoimenov, R. L. Klinger, G. L. Marchin and K. J. Klabunde. "Metal oxide nanoparticles as bactericidal agents" Langmuir 18 (2002) 6679-6686.
    [74] E. M. Hetrick and M. H. Schoenfisch. "Reducing implant-related infections: active release strategies" Chemical Society Reviews 35 (2006) 780-789.
    [75] J. M. Schierholz, L. J. Lucas, A. Rump and G. Pulverer. "Efficacy of silver-coated medical devices" The Journal of Hospital Infection 40 (1998) 257-262.
    [76] Z. Shi, K. G. Neoh, S. P. Zhong, L. Y. Yung, E. T. Kang and W. Wang. "In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel" Journal of Biomedical Materials Research.Part A 76 (2006) 826-834.
    [77] M. Rivera-Garza, M. T. Olguin, I. Garcia-Sosa, D. Alcantara and G. Rodriguez-Fuentes. "Silver supported on natural Mexican zeolite as an antibacterial material" Microporous and Mesoporous Materials 39 (2000) 431-444.
    [78] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O. Kim. "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus" Journal of Biomedical Materials Research 52 (2000) 662-668.
    [79] I. Sondi and B. Salopek-Sondi. "Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria" Journal of Colloid and Interface Science 275 (2004) 177-182.
    [80] 李賢學. "化學還原法製備奈米銀及其應用" 國立清華大學博士論文 (2005)
    [81] W. K. Son, J. H. Youk, T. S. Lee and W. H. Park. "Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles" Macromolecular Rapid Communications 25 (2004) 1632-1637.
    [82] K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk and T. J. Kang. "Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles" Journal of Polymer Science Part B-Polymer Physics 44 (2006) 2468-2474.
    [83] W. Jin, H. K. Lee, R. H. Jeong, W. H. Park and J. H. Youk. "Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone)" Macromolecular Rapid Communications 26 (2005) 1903-1907.
    [84] R. Kumar and H. Munstedt. "Silver ion release from antimicrobial polyamide/silver composites" Biomaterials 26 (2005) 2081-2088.
    [85] S. Tarimala, N. Kothari, N. Abidi, E. Hequet, J. Fralick and L. L. Dai. "New approach to antibacterial treatment of cotton fabric with silver nanoparticle-doped silica using sol-gel process" Journal of Applied Polymer Science 101 (2006) 2938-2943.
    [86] B. Mahltig, H. Haufe and H. Bottcher. "Functionalisation of textiles by inorganic sol-gel coatings" Journal of Materials Chemistry 15 (2005) 4385-4398.
    [87] M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka and K. Yamamoto. "Antibacterial silver-containing silica glass prepared by sol-gel method" Biomaterials 21 (2000) 393-398.
    [88] M. Kawashita, S. Toda, H. M. Kim, T. Kokubo and N. Masuda. "Preparation of antibacterial silver-doped silica glass microspheres" Journal of Biomedical Materials Research Part a 66A (2003) 266-274.
    [89] M. Kawashita. "Ceramic microspheres for biomedical applications" International Journal of Applied Ceramic Technology 2 (2005) 173-183.
    [90] J. X. Wang, L. X. Wen, Z. H. Wang, M. Wang, L. Shao and J. F. Chen. "Facile synthesis of hollow silica nanotubes and their application as supports for immobilization of silver nanoparticles" Scripta Materialia 51 (2004) 1035-1039.
    [91] J. X. Wang, L. X. Wen, Z. H. Wang and J. F. Chen. "Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects" Materials Chemistry and Physics 96 (2006) 90-97.
    [92] L. Z. Jiang, Z. P. Wu, D. Z. Wu, W. T. Yang and R. G. Jin. "Controllable embedding of silver nanoparticles on silica nanospheres using poly(acrylic acid) as a soft template" Nanotechnology 18 (2007) 185603.
    [93] I. Ahmed, D. Ready, M. Wilson and J. C. Knowles. "Antimicrobial effect of silver-doped phosphate-based glasses" Journal of Biomedical Materials Research Part a 79A (2006) 618-626.
    [94] E. Verne, S. Di Nunzio, M. Bosetti, P. Appendino, C. V. Brovarone, G. Maina and M. Cannas. "Surface characterization of silver-doped bioactive glass" Biomaterials 26 (2005) 5111-5119.
    [95] D. Lee, R. E. Cohen and M. F. Rubner. "Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles" Langmuir 21 (2005) 9651-9659.
    [96] V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann and R. Schnettler. "An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement" Biomaterials 25 (2004) 4383-4391.
    [97] 李秉傑、邱宏明和王奕凱合譯. "非均勻系催化原理與應用" 渤海堂文化公司印行 (1993)
    [98] C. N. Satterfield. "Heterogeneous Catalysis in Industrial Practice" McGraw-Hill, Inc. (1991)
    [99] T. H. Kim, B. Ramachandra, J. S. Choi, M. B. Saidutta, K. Y. Choo, S. D. Song and Y. W. Rhee. "Selective oxidation of methanol to formaldehyde using modified iron-molybdate catalysts" Catalysis Letters 98 (2004) 161-165.
    [100] C. T. Wang and S. H. Ro. "Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation" Applied Catalysis A-General 285 (2005) 196-204.
    [101] L. Lefferts, J. G. Vanommen and J. R. H. Ross. "The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen silver interaction" Applied Catalysis 23 (1986) 385-402.
    [102] L. Lefferts, J. G. Vanommen and J. R. H. Ross. "The silver oxygen interaction in relation to oxidative dehydrogenation of methanol" Applied Catalysis 31 (1987) 291-308.
    [103] A. Nagy and G. Mestl. "High temperature partial oxidation reactions over silver catalysts" Applied Catalysis A-General 188 (1999) 337-353.
    [104] M. Qian, M. A. Liauw and G. Emig. "Formaldehyde synthesis from methanol over silver catalysts" Applied Catalysis A-General 238 (2003) 211-222.
    [105] E. H. Cao and A. Gavriilidis. "Oxidative dehydrogenation of methanol in a microstructured reactor" Catalysis Today 110 (2005) 154-163.
    [106] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson. "Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst" Applied Catalysis A-General 265 (2004) 85-101.
    [107] Y. Dong, W. L. Dai, J. L. Li and J. F. Deng. "Direct dehydrogenation of methanol to formaldehyde over novel Ag-containing ceramics" Chemistry Letters (2001) 534-535.
    [108] L. P. Ren, W. L. Dai, X. L. Yang, J. H. Xu, Y. Cao, H. X. Li and K. N. Fan. "Direct dehydrogenation of methanol to formaldehyde over pre-treated polycrystalline silver catalyst" Catalysis Letters 99 (2005) 83-87.
    [109] L. P. Ren, W. L. Dai, Y. Cao, F. X. Li and K. N. Fan. "First observation of highly efficient dehydrogenation of methanol to anhydrous formaldehyde over novel Ag-SiO2-MgO-Al2O3 catalyst" Chemical Communications (2003) 3030-3031.
    [110] L. P. Ren, W. L. Dai, Y. Cao and K. N. Fan. "Novel highly active Ag-SiO2-MgO catalysts used for direct dehydrogenation of methanol to anhydrous formaldehyde" Catalysis Letters 85 (2003) 81-85.
    [111] L. P. Ren, W. L. Dai, Y. Cao, H. X. Li, W. H. Zhang and K. N. Fan. "Highly active Ag-SiO2-Al2O3 catalyst used for the dehydrogenation of methanol to anhydrous formaldehyde" Acta Chimica Sinica 61 (2003) 937-940.
    [112] L. P. Ren, W. L. Dai, X. L. Yang, Y. Cao, H. X. Li and K. N. Fan. "Novel highly active Ag-SiO2-Al2O3-ZnO catalyst for the production of anhydrous HCHO from direct dehydrogenation of CH3OH" Applied Catalysis A-General 273 (2004) 83-88.
    [113] S. Ruf and G. Emig. "Pure dehydrogenation of methanol to formaldehyde: A homogeneously sodium-catalysed vapour-phase reaction" Applied Catalysis A-General 161 (1997) L19-L24.
    [114] S. Ruf, A. May and G. Emig. "Anhydrous formaldehyde by sodium catalysis" Applied Catalysis A-General 213 (2001) 203-215.
    [115] L. Lefferts, J. G. Vanommen and J. R. H. Ross. "The influence of hydrogen treatment and catalyst morphology on the interaction of oxygen with a silver Catalyst" Applied Catalysis 34 (1987) 329-339.
    [116] H. Schubert, U. Tegtmeyer, D. Herein, X. Bao, M. Muhler and R. Schlogl. "On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol" Catalysis Letters 33 (1995) 305-319.
    [117] A. J. Nagy, G. Mestl, D. Herein, G. Weinberg, E. Kitzelmann and F. Schlogl. "The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system" Journal of Catalysis 182 (1999) 417-429.
    [118] A. Nagy, G. Mestl, T. Ruhle, G. Weinberg and R. Schlogl. "The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction" Journal of Catalysis 179 (1998) 548-559.
    [119] G. J. Millar, M. L. Nelson and P. J. R. Uwins. "In situ observation of structural changes in polycrystalline silver catalysts by environmental scanning electron microscopy" Journal of the Chemical Society-Faraday Transactions 94 (1998) 2015-2023.
    [120] G. J. Millar, M. L. Nelson and P. J. R. Uwins. "In situ imaging of catalytic etching on silver during methanol oxidation conditions by environmental scanning electron microscopy" Journal of Catalysis 169 (1997) 143-156.
    [121] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson. "Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde" Applied Catalysis A-General 266 (2004) 257-273.
    [122] X. Bao, M. Muhler, B. Pettinger, R. Schlogl and G. Ertl. "On the nature of the active state of silver during catalytic-oxidation of methanol" Catalysis Letters 22 (1993) 215-225.
    [123] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson. "The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study" Physical Chemistry Chemical Physics 3 (2001) 3838-3845.
    [124] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson. "Oxygen chemisorption on an electrolytic silver catalyst: A combined TPD and Raman spectroscopic study" Applied Surface Science 214 (2003) 36-51.
    [125] D. A. Skoog, F. J. Holler and T. A. Nieman. "Principles of Instrumental Analysis" Saunders College Publishing (1998) 741-744.
    [126] C. A. R. Costa, C. A. P. Leite, E. F. de Souza and F. Galembeck. "Size effects on the microchemistry and plasticity of Stober silica particles: A study using EFTEM, FESEM, and AFM-SEPM microscopies" Langmuir 17 (2001) 189-194.
    [127] 張有義和郭蘭生編譯. "膠體及界面化學入門" 高立出版社 (1997)
    [128] Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno and L. M. Liz-Marzan. "Silica coating of silver nanoparticles using a modified Stober method" Journal of Colloid and Interface Science 283 (2005) 392-396.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE