研究生: |
譚至善 Tan Chih Shan |
---|---|
論文名稱: |
奈米銅化合物之陽離子交換行為、晶體晶面效應與結晶過渡態之研究 Cation Exchange Behavior, Facet-Dependent Effect and Transition States in Crystallization of Nanoscale Copper Compounds |
指導教授: |
陳力俊
Lih Juann Chen |
口試委員: |
鄭晃忠
Huang-Chung Cheng 陳力俊 Lih Juann Chen 黃暄益 Huang Hsuan Yi 吳文偉 Wu Wen Wei 果尚志 Gwo Shang Jr |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 陽離子交換 、晶面效應 、過渡態 、銅化合物 |
外文關鍵詞: | Cation Exchange, Facet-Dependent Effect, Transition States, Copper Compounds |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於科學的逐步發展,使得許多領域,如材料、化學、物理和光電都聚焦在奈米技術的領域裡尋求新的突破。在奈米的領域會有這些新的突破是因為物質在奈米尺度下或原子尺度下他們原本的屬性會改變成新的和未被發現的特性。在這樣的小尺度下,材料會變得與以往經驗過的特性不同。歸功於各式電子顯微鏡的發展,我們可以通過高分辨率電子顯微鏡以其穿隧式電子顯微鏡觀察材料的原子尺度並解釋新的現象。 奈米科技(Nanotechnology) 成為一個打破了傳統的物理、化學和生物學研究領域之間壁壘連接路徑。本研究主要分三個部分:經由陽離子交換製作超晶格p-n異質結構,動態觀察過渡金屬鹽凝結和陽離子交換的過程,最後探討利用晶體表層小晶面(facet)的特性使得一個奈米粒子有開關的特性。
過去一般在製備超晶格奈米線需要精確控制的分段進行,藉由不同程序的生長。在此,我們展示了一種新的方法來製作超晶格奈米線﹔CdS的奈米線在低溫下進行連續的陽離子交換,會先形成Cu2S的奈米線最後再形成Cu2S-Ag2S的超晶格p-n異質結構。Cu2S的奈米線中具有孿晶結構,這使得銀離在在進行陽離子交換時會先以孿晶界的所在為開始Ag2S的成核和生長的地方。藉由改變不同的Cu2S奈米線在AgNO3溶液中的浸泡時間可以控制Ag2S段的長度。同時發現相鄰的Cu2S-Ag2S具有p-n特性的異質結構。
研究在液體狀態下的動力學化學反應是對於一些實際的應用如催化反應很有助益。含銅離子的水溶液存在於在許多工業和生活的環境中。在本研究中觀察到氯化銅水溶液的顏色隨溶液濃度的變化而改變。首先利用臨場表面增強拉曼散射的技術來探測氯化銅水溶液結晶的過程並發現其中存在著許多的中間界穩態,而這些中間界穩態與其顏色變化相關。臨場表面增強拉曼散射的技術也用來觀測CdS到MoS2的陽離子交換過程,並且發現了有五個過渡的中間態。這種臨場原表面增強拉曼散射的技術應可以廣泛適用於探測在各種溶液中的化學反應的中間態。
半導體表面的不同晶面影響奈米單晶Cu2O的電性是很重要的課題,而這種研究可增強我們的對於半導體各種不同晶面影響的了解。本研究顯示一個Cu2O八面體表面是高度導電的,一個Cu2O立方體表面呈半導電性,而一個Cu2O菱形十二面表面不導電。電導率的差異是歸因於具有不同程度的能帶彎曲的現象存在於不同晶面的表層上。在一個rhombicuboctahedron兩個不同的晶面上量測到二極體的現象,顯示可以使用多面體單晶奈米顆粒作為功能電子元件。Cu2O各種不同晶面(111),(100),和(110)的不同態密度顯示出不同的金屬,半金屬,以及半導體帶結構。藉由密度泛含理論計算不同晶面的厚度,可驗證在Cu2O不同晶面中具有不同態密度的現象是存在表面層厚度小於1.5奈米的晶面中。
Due to the timely confluence of basic sciences, chemistry, physics, and biology as well as development of powerful new tools, nanotechnology has been advancing at a dazzling speed in recent years. The new breakthrough is matters will change their ordinary properties into new and undiscovered properties in nanoscale or atomic scale. In such a small scale, materials will be totally different with any matters which we have ever experienced before. Thanks to the instrumental development, we can observe materials in atomic scale via high resolution electron microscope and to explain the unexpected phenomenon. Nanotechnology becomes a connecting path to break down the barriers among the traditional physics, chemistry, and biology research fields. The present research is focused on three parts: fabrication of Ag2S-Cu2S superlattice p-n heterojunction by cation exchange, dynamic observation of crystallization of CuCl2 and cation exchange, and the facet-dependent I-V behaviors on a single Cu2O nanoparticle.
Fabrication of superlattice nanowires (NWs) with precisely controlled segments normally requires a sequential introduction of reagents to the growing wires at elevated temperatures and low pressure. Here we demonstrate a new approach to fabricating superlattice NWs possessing multiple p-n heterojunctions by converting the initially-formed CdS to Cu2S NWs first and then to segmented Cu2S–Ag2S NWs through the sequential cation exchange at low temperatures. In the formation of Cu2S NWs, twin boundaries generated along the NWs act as the preferred sites to initiate the nucleation and growth of Ag2S segments. Varying the immersion time of Cu2S NWs in a AgNO3 solution controls the Ag2S segment length. Adjacent Cu2S and Ag2S segments in a NW were found to display the typical electrical behavior of a p-n junction.
For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of the aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for the color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediate states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution.
It is of interest to examine facet-dependent electrical properties of single Cu2O crystals, since such study greatly advances our understanding of various facet effects exhibited by semiconductors. We show a Cu2O octahedron is highly conductive, a cube is moderately conductive, and a rhombic dodecahedron is non-conductive. The conductivity differences are ascribed to the presence of a thin surface layer having different degrees of band bending. When electrical connection was made on two different facets of a rhombicuboctahedron, a diode-like response was obtained, demonstrating the potential of using single polyhedral nanocrystals as functional electronic components. Density of state (DOS) plots for three layers of Cu2O (111), (100), and (110) planes show respective metallic, semimetal, and semiconducting band structures. By examining DOS plots for varying number of planes, the surface layer thicknesses responsible for the facet-dependent electrical properties of Cu2O crystals have been determined to be below 1.5 nm for these facets.
References
Chapter 1
1.1 Feynman, R. P. "There's plenty of room at the bottom," at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959)
1.2 http://www.its.caltech.edu/~feynman/plenty.html
1.3 http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-bio.html
1.4 http://en.wikipedia.org/wiki/Ernst_Ruska
1.5 Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. ”Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 1982, 40, 178-180.
1.6 Eigler, D. M.; Schweizer, E. K. “Positioning single atoms with a scanning tunnelling microscope,” Nature 1990, 344, 524-526.
1.7 http://researcher.watson.ibm.com/researcher/files/us-flinte/stm10.jpg
1.8 Binnig, G.; Quate, C. F.; Gerber, Ch. ”Atomic force microscope,” Phys. Rev. Lett. 1986, 56, 930-933.
1.9 http://www-03.ibm.com/press/us/en/presskit/32887.wss
1.10 http://nisenet.org/blog/post/future-nanoscale-research-and-development
1.11 Grieneisen, M. L. “The proliferation of nano journals,” Nature Nanotech. 2010, 5, 825-825.
1.12 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E.” C 60: buckminsterfullerene,” Nature 1985, 318, 162-163.
1.13 http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html
Chapter 2
2.1 http://www.green-planet-solar-energy.com/electronegativity-values.html
2.2 Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science 2007, 317, 355-358.
2.3 An, J.; Rosi, N. L. “Tuning MOF CO2 adsorption properties via cation exchange,” J. Am. Chem. Soc. 2010, 132, 5578-5579.
2.4 Luther, J. M.; Zheng, H.; Sadtler, B.; Alivisatos, A. P. “Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions,” J. Am. Chem. Soc. 2009, 131, 16851-16857.
2.5 Le Ru, E. C.; Etchegoin, P. “Principles of surface-enhanced Raman spectroscopy and related plasmonic effects,” Elsevier, 2008.
2.6 Parr, Robert G.; Yang, Weitao. “Density-functional theory of atoms and molecules,” Oxford University Press, 1989.
2.7 Tsuneda, Takao. “Density functional theory in quantum chemistry,” Springer, 2014.
2.8 Koch, Wolfram; Max C. Holthausen. “A chemist's guide to density functional theory.” Vol. 2, Wiley-Vch, 2001.
2.9 胡維平。“計算化學進階訓練課程講義” 。
Chapter 3
3.1 Stranahan, S. M.; Willets, K. A. “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 2010, 10, 3777-3784.
3.2 Le Ru, E. C.; Etchegoin, P. “Principles of surface-enhanced Raman spectroscopy and related plasmonic effects,” Elsevier, 2008.
3.3 Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. “Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity,” J. Am. Chem. Soc. 2011, 134, 1261-1267.
3.4 Ho, J. Y.; Huang, M. H. “Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity,” J. Phys. Chem. C 2009, 113, 14159-14164.
3.5 Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z. “The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity,” Catal. Sci. Technol. 2012, 2, 925-930.
Chapter 4
4.1 Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 2004, 430, 61-65.
4.2 Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. “Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction,” ACS Nano 2010, 4, 6425-6432.
4.3 Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P.; Kuo, C. H.; Huang,
M. H.; Hsu, C. S. “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” Acs Nano 2011, 5, 959-967.
4.4 Dennler, G.; Scharber, M. C.; Brabec, C. J. “Polymer‐Fullerene bulk‐
heterojunction solar cells,” Adv Mater. 2009, 21, 1323-1338.
4.5 Zhang, W.; Jin, W.; Fukushima, T.; Saeki, A.; Seki, S.; Aida, T.
“Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments,” Science 2011, 334, 340-343.
4.6 Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 2005, 309, 1700-1704.
4.7 Papagno, M.; Rusponi, S.; Sheverdyaeva, P. M.; Vlaic, S.; Etzkorn, M.; Pacilé,
D.; Moras, P.; Carbone, C.; Brune, H. “Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice,” Acs Nano 2011, 6, 199-204.
4.8 Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson,
L. “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nature Nanotech. 2008, 4, 50-55.
4.9 Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y. “Monodisperse icosahedral Ag, Au, and
Pd nanoparticles: size control strategy and superlattice formation,” Acs Nano 2008, 3, 139-148.
4.10 Chen, Z.; O’Brien, S. “Structure direction of II− VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio,” Acs Nano 2008, 2, 1219-1229.
4.11 Xiang, J.; Lu, W.; Hu, Y.; Wu, Y.; Yan, H.; Lieber, C. M. “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 2006, 441, 489-493.
4.12 Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 2007, 449, 885-889.
4.13 Tang, J.; Huo, Z.; Brittman, S.; Gao, H.; Yang, P. “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nature Nanotech. 2011, 6, 568-572.
4.14 Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. “Nanowire electronic and optoelectronic devices,” Mater. Today 2006, 9, 18-27.
4.15 Yan, R.; Gargas, D.; Yang, P. “Nanowire photonics, “ Nat. Photon. 2009, 3, 569-576.
4.16 Carbone, L.; Cozzoli, P. D. “Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms,” Nano Today 2010, 5, 449-493.
4.17 Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 2002, 415, 617-620.
4.18 Wu, Y.; Fan, R.; Yang, P. “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett. 2002, 2, 83-86.
4.19 Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. “Single-crystalline kinked semiconductor nanowire superstructures,” Nature Nanotech. 2009, 4, 824-829.
4.20 Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science 2007, 317, 355-358.
4.21 Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P. “Selective facet reactivity during cation exchange in cadmium sulfide nanorods,” J. Am. Chem. Soc. 2009, 131, 5285-5293.
4.22 Demchenko, D. O.; Robinson, R. D.; Sadtler, B.; Erdonmez, C. K.; Alivisatos, A. P.; Wang, L. W. “Formation mechanism and properties of CdS-Ag2S nanorod superlattices,” ACS Nano 2008, 2, 627-636.
4.23 Luther, J. M.; Zheng, H.; Sadtler, B.; Alivisatos, A. P. “Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions,” J. Am. Chem. Soc. 2009, 131, 16851-16857.
4.24 Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. “Cation exchange reactions in ionic nanocrystals,” Science 2004, 306, 1009-1012.
4.25 Ertekin, E.; Greaney, P. A.; Chrzan, D. C.; Sands, T. D. “Equilibrium limits of coherency in strained nanowire heterostructures,“ J. Appl. Phys. 2005, 97, 114325.
4.26 Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Observation of atomic diffusion at twin-modified grain boundaries in copper,” Science 2008, 321, 1066-1069.
4.27 Wagner, R. S.; Ellis, W. C. “Vapor‐liquid‐solid mechanism of single crystal growth,” Appl. Phys. Lett. 1964, 4, 89-90.
4.28 Lai, C. H.; Lu, M. Y.; Chen, L. J. “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage,” J. Mater. Chem 2012, 22, 19-30.
4.29 Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H. “Facet-dependent and Au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures,” J. Am. Chem. Soc. 2011, 133, 1052-1057.
Chapter 5
5.1 Bastidas, D. M.; Criado, M.; Fajardo, S.; La Iglesia, V. M.; Cano, E.; Bastidas, J. M. “Copper deterioration: causes, diagnosis and risk minimization,” Int. Mater. Rev. 2010, 55, 99-127.
5.2 Sun, H.; Xiaoyan, L.; S. Jörg, S. “Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid,” J. Mol. Catal. A: Chem. 2005, 240, 119-122.
5.3 Hanna, F.; Hamid, Z. A.; Aal, A. A. “Controlling factors affecting the stability and rate of electroless copper plating,” Mater. Lett. 2004, 58, 104-109.
5.4 Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. “Direct observation of reduction of Cu(II) to Cu(I) by terminal alkynes,” J. Am. Chem. Soc. 2014, 136,924-926.
5.5 Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tóth, É.; Powell, D. H.; Fischer, H. E.; Helm, L.; Merbach, A. E. “First solvation shell of the Cu(II) aqua oon: evidence for fivefold coordination,” Science 2001, 291, 856-859.
5.6 Rogers, M. S.; David, M. D. “Copper-tyrosyl radical enzymes,” Curr. Opin. Chem. Biol. 2003, 7, 189-196.
5.7 Robert R. Crichton, “Biological Inorganic Chemistry,” [2nd edition] Elsevier, 2012, 279-296.
5.8 Gunten, U. V. “Ozonation of drinking water: part I. oxidation kinetics and product formation,” Water Research 2003, 37, 1469-1487.
5.9 Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. “Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?” Nat. Rev. Mol. Cell Biol. 2007, 8, 722-728.
5.10 Wu, S.; Bräuchle, C.; El‐Sayed, M. A. “Recording of transient gratings using the short lived bacteriorhodopsin photocycle intermediates,” Adv. Mater. 1993, 5, 838-842.
5.11 Bai, Y.; Sosnick, T. R.; Mayne, L.; Englander, S. W. “Protein folding intermediates : native-state hydrogen exchange,” Science 1995, 269, 192-197.
5.12 Poole, P. H.; Sciortino, F.; Essmann, U.; Stanley, H. E. “Phase behavior of metastable water,” Nature 1992, 360, 324-328.
5.13 Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C. “Gold Nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 2010, 132, 18103-18114.
5.14 Taylor, R. W.; Coulston, R. J.; Biedermann, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A. “In Situ SERS monitoring of photochemistry within a nanojunction reactor,” Nano Lett. 2013, 13, 5985-5990.
5.15 Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Observation of atomic diffusion at twin-modified grain boundaries in copper,” Science 2008, 321, 1066-1069.
5.16 Lupulescu, A. I.; Rimer, J. D. “In Situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization,” Science 2014, 344, 729-732.
5.17 Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. “In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways,” Science 2014, 345, 1158-1102.
5.18 Fleischmann, M. P.; Hendra, J.; McQuillan, A. J. “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.1974, 26, 163-166.
5.19 Liu, Z.; Piao, L.; Han, D.; Kim, B. J.; Chung, T. D. “Surface enhanced Raman scattering on non-SERS active substrates and in situ electrochemical study based on a single gold microshell,” Adv. Mater. 2014, 26, 2431-2439.
5.20 Oh, Y. J.; Jeong, K. H. “Highly sensitive, uniform, and reproducible surface- enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 2012, 24, 2234-2237.
5.21 Eric C. Le Ru; P. Etchegoin, “Principles of Surface-enhanced Raman Spectroscopy and Related Plasmonic Effects” Elsevier, 2008.
5.22 Stranahan, S. M.; Willets, K. A. “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 2010, 10, 3777-3784.
5.23 Beattie, I. R.; Gilson, T. R.; Ozin, G. A. “Single-crystal Raman spectroscopy of ‘square-planar’ and ‘tetrahedral’CuCl42– ions, of the ZnCl42– ion, and of CuCl2, 2H2O,” J. Am. Chem. Soc. 1969, 534-541.
5.24 Yi, H. B.; Xia, F. F.; Zhou, Q.; Zeng, D. “[CuCl3]- and [CuCl4]2- hydrates in concentrated aqueous solution: A density functional theory and ab initio study,” J. Phys. Chem. A. 2011, 115, 4416-4426.
5.25 De Vreese, P.; Brooks, N. R.; Van Hecke, K.; Van Meervelt, L.; Matthijs, E.; Binnemans, K.; Van Deun, R. S. “Speciation of copper (II) complexes in an ionic liquid based on choline chloride and in choline chloride/water mixtures,” Inorg. Chem. 2012, 51, 4972-4981.
5.26 Frank, P.; Benfatto, M.; Hedman, B.; Hodgson, K. O. “The X-ray absorption spectroscopic model of the copper (II) imidazole complex Ion in liquid aqueous solution: a strongly solvated square pyramid,” Inorg. Chem. 2012, 51, 2086-2096.
5.27 Gómez-Salces, S.; Aguado, F.; Valiente, R.; Rodríguez, F. “Effect of pressure on the band gap and the local FeO6 environment in BiFeO3,” Angew. Chem., Int. Ed. 2012, 124, 9469-9472.
5.28 Kajita, Y.; Arii, H.; Saito, T.; Saito, Y.; Nagatomo, S.; Kitagawa, T.; Funahashi, Y.; Ozawa, T.; Masuda, H. “Syntheses, characterization, and dioxygen reactivities of Cu (I) complexes with cis, cis-1, 3, 5-triaminocyclohexane derivatives: A Cu (III)2O2 intermediate exhibiting higher CH activation,” Inorg. Chem. 2007, 46, 3322-3335.
5.29 Sun, S.; Wang, A. “Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan,” J. Hazard Mater. 2006, 13, 1103-111.
5.30 Balamurugan, B.; Mehta, B. R. “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin solid films. 2001, 396, 90-96.
5.31 Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. “Cation exchange reactions in ionic nanocrystals,” Science 2004, 306, 1009-1012.
5.32 Miszta, K.; Greullet, F.; Marras, S.; Prato, M.; Toma, A.; Arciniegas, M.; Manna, L.; Krahne, R. “Nanocrystal film patterning by inhibiting cation exchange via electron-beam or X-ray lithography,” Nano Lett 2014, 14, 2116-2122.
5.33 Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T; Olivier, A.; Baillargeat, D. “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 2012, 22, 1385-1390.
5.34 Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 1999, 60, 2883-2892.
5.35 Wang, Y.; Cong, C.; Qiu, C.; Yu, T. “Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain,” Small 2013, 9, 2857-2861.
5.36 Koo, B. K.; Lee, U. “Hydrothermal synthesis and crystal structure of a polyoxomolybdate aggregate constructed from hexamolybdate, octamolybdate, and cobalt (III) complex ion,” Inorg. Chim. Acta 2006, 359, 2067-2071.
Chapter 6
6.1 Huang, M. H.; Rej. S.; Hsu, S. C. “Facet-dependent properties of polyhedral nanocrystals,” Chem. Commun. 2014, 50, 1634-1644.
6.2 Chiu, C. Y.; Huang, M. H. “Achieving polyhedral nanocrystal growth with systematic shape control,” J. Mater. Chem. A 2013, 1, 8081-8092.
6.3 Sun, S.; Yang, Z. “Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures,” RSC Adv. 2014, 4, 3804-3822.
6.4 Huang, W.C.; Lyu, L.M.; Yang, Y.C.; Huang, M. H. “Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity,” J. Am. Chem. Soc. 2012, 134, 1261-1267.
6.5 Ho, J. Y.; Huang, M. H. “Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity,” J. Phys. Chem. C 2009, 113, 14159-14164.
6.6 Wang, X.; Wu, H. F.; Kuang, Q.; Huang, R. B.; Xie, Z. X.; Zheng, L. S. “Shape-dependent antibacterial activities of Ag2O polyhedral particles,” Langmuir 2009, 26, 2774-2778.
6.7 Lyu, L. M.; Wang, W. C.; Huang, M. H. “Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties,” Chem.-Eur. J. 2010, 16, 14167-14174.
6.8 Kim, M. J.; Cho, Y. S.; Park, S. H.; Huh, Y. D. “Facile synthesis and fine morphological tuning of Ag2O,” Cryst. Growth Des. 2012, 12, 4180-4185.
6.9 Wang, G.; Ma, X.; Huang, B.; Cheng, H.; Wang, Z.; Zhan, J.; Qin, X.; Zhang, X.; Dai, Y. “Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities,” J. Mater. Chem. 2012, 22, 21189-21194.
6.10 Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H. “Fast synthesis of PbS nanocrystals in aqueous solution with shape evolution from cubic to octahedral structures and their assembled structures,” Chem.-Eur. J., 2012, 18, 14473-14478.
6.11 Chen, H. S.; Wu, S. C.; Huang, M. H. “Direct synthesis of size-tunable PbS nanocubes and octahedra and the pH effect on crystal shape control,” Dalton Trans. 2015, DOI: 10.1039/C4DT03345K.
6.12 Wang, Y.; Dai, Q.; Zou, B.; Yu, W. W.; Liu, B.; Zou, G. “Facile assembly of size-and shape-tunable IV− VI nanocrystals into superlattices,” Langmuir 2010, 26, 19129-19135.
6.13 Li, C.; Bai, T.; Li, F.; Wang, L.; Wu, X.; Yuan, L.; Shi, Z.; Feng, S. “Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices,” CrystEngComm 2013, 15, 597-603.
6.14 Wang, W. C.; Lyu, L. M.; Huang, M. H. “Investigation of the effects of polyhedral gold nanocrystal morphology and facets on the formation of Au-Cu2O core-shell heterostructures,” Chem. Mater. 2011, 23, 2677-2684.
6.15 Chanda, K.; Rej, S.; Huang, M. H. “Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3, 5-disubstituted isoxazoles,” Nanoscale 2013, 5, 12494-12501.
6.16 Li, L.; Nan, C.; Peng, Q.; Li, Y. ”Selective synthesis of Cu2O nanocrystals as shape‐dependent catalysts for oxidative arylation of phenylacetylene,” Chem.‒Eur. J. 2012, 18, 10491-10496.
6.17 Tsai, Y. H.; Chanda, K.; Chu, Y. T.; Chiu, C. Y.; Huang, M. H. “Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles,” Nanoscale 2014, 6, 8704-8709.
6.18 Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H. “Facet-dependent and Au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures,” J. Am. Chem. Soc. 2010, 133, 1052-1057.
6.19 Wang, L.; Ge, J.; Wang, A.; Deng, M.; Wang, X.; Bai, S.; Li, R.; Jiang, J.; Zhang, Q.; Luo, Y.; Xiong, Y. “Designing p‐type semiconductor-metal hybrid structures for improved photocatalysis,” Angew. Chem. Int. Ed. 2014, 53, 5107-5111.
6.20 Hua, Q.; Cao, T.; Bao, H.; Jiang, Z.; Huang, W. “Crystal‐plane‐controlled surface chemistry and catalytic performance of surfactant‐free Cu2O nanocrystals,” ChemSusChem 2013, 6, 1966-1972.
6.21 Yang, Y. C.; Wang, H.-J.; Lin, F. C.; Huang, J.-S.; Huang, M. H. “Facet-dependent optical properties of polyhedral Au-Cu2O core-shell nanocrystals,” Nanoscale 2014, 6, 4316-4324.
6.22 Hsu, S. C.; Liu, S. Y.; Wang, H. J.; Huang, M. H. “Facet‐dependent surface plasmon resonance properties of Au-Cu2O core-shell nanocubes, octahedra, and rhombic dodecahedra,” Small 2015, 11, 195-201.
6.23 Tan, C. S.; Hsiao, C. H.; Wang, S. C.; Liu, P. H.; Lu, M. Y.; Huang, M. H.; Ouyang, H.; Chen, L. J. “Sequential cation exchange generated superlattice nanowires forming multiple p–n heterojunctions,” ACS Nano 2014, 8, 9422-9426.
6.24 Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. “Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity,” J. Am. Chem. Soc. 2011, 134, 1261-1267.
6.25 Ho, J. Y.; Huang, M. H. “Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity,” J. Phys. Chem. C 2009, 113, 14159-14164.
6.26 Yao, Z. Q.; Liu, S. L.; Zhang, L.; He, B.; Kumar, A.; Jiang, X.; Zhang, W. J.; Shao, G. “Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates,” Appl. Phys. Lett. 2012, 101, 042114.
6.27 Zhai, T.; Liu, H.; Li, H.; Fang, X.; Liao, M.; Li, L.; Zhou, H.; Koide, Y.; Bando, Y.; Golberg, D. “Centimeter‐long V2O5 nanowires: from synthesis to field‐emission, electrochemical, electrical transport, and photoconductive properties,” Adv. Mater. 2010, 22, 2547-2552.
6.28 Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 2001, 409, 66-69.
6.29 Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 2002, 14, 158-160.
6.30 Zhang, Z.; Yates, J. T., Jr. “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 2012, 112, 5520-5551.
6.31 Sze, S. M. “Physics of semiconductor devices,” 2nd edn, pp. 342, Wiley, 1998.
6.32 Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z. “The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity,” Catal. Sci. Technol. 2012, 2, 925-930.
Chapter 8
8.1 Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. “High-resolution EM of colloidal nanocrystal growth using graphene liquid cells,” Science. 2012, 336, 61-64.
8.2 Liao, H. G.; Cui, L.; Whitelam, S.; Zheng, H. “Real-time imaging of Pt3Fe nanorod growth in solution,” Science. 2012, 336, 1011-1014.
8.3 Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. (2014). “Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM,” Nano Lett. 2014, 14, 1745-1750.
8.4 Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. “Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction,” J. Am. Chem. Soc. 2011, 133, 6078-6089.
8.5 Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. “Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties,” J. Am. Chem. Soc. 2011, 133, 6490-6492.
8.6 Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H. “Facet-dependent electrical conductivity properties of Cu2O crystals,” Nano Lett. 2015, 15, 2155-2160.
8.7 Kuo, C. H.; Huang, M. H. “Morphologically controlled synthesis of Cu2O nanocrystals and their properties,” Nano Today. 2010, 5, 106-116.
8.8 Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan, C. H. “Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt− Pd tetrahedrons and cubes,” J. Am. Chem. Soc. 2011, 133, 3816-3819.