簡易檢索 / 詳目顯示

研究生: 福 倪
Fini Iuni
論文名稱: 利用卷積長短期記憶模型(ConvLSTM)預測吐瓦魯經濟海域之鮪魚蹤跡
Predicting Tuna Fishing Locations in Tuvalu’s Exclusive Economic Zone Using Convolutional Long Short-Term Memory Network
指導教授: 黃能富
Huang, Nen-Fu
口試委員: 吳庭育
Wu, Tin-Yu
石維寬
Shih, Wei-Kuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 94
中文關鍵詞: ConvLSTM吐瓦魯鮪魚海表溫度葉綠素a專屬經濟區
外文關鍵詞: ConvLSTM, Tuvalu, Tuna, Sea Surface Termperature, Chlorophyll a, Exclusive Economic Zone
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究專注於使用兩種先進模型來預測吐瓦魯專屬經濟區(EEZ)內的金槍魚捕撈點:棲息地適宜指數(HSI)和卷積長短期記憶(ConvLSTM)模型。HSI模型整合了環境因素,如海表溫度(SST)、葉綠素濃度和捕撈努力。儘管HSI模型與金槍魚出現的正相關性較弱,但其結果在統計上具有顯著性,證明其在預測適宜棲息地方面的有效性。

    ConvLSTM模型能夠高精度地捕捉空間和時間模式,顯著超越多種基準集成學習模型。其卓越的性能突顯了其在預測金槍魚出現方面的穩健性和有效性。

    該研究強調了HSI和ConvLSTM模型在吐瓦魯EEZ內的漁業管理和保護方面的潛力。未來的研究可以通過引入更多數據源來進一步提升這些模型,從而促進可持續的漁業管理和海洋生態系統的保護。


    This study focuses on predicting tuna fishing spots within Tuvalu’s Exclusive Economic Zone (EEZ) using two advanced models: the Habitat Suitability Index (HSI) and the Convolutional Long Short-Term Memory (ConvLSTM). The HSI model integrates environmental factors such as sea surface temperature (SST), chlorophyll concentration, and fishing efforts. Despite a weak positive correlation with tuna presence, the HSI model’s results were statistically significant, demonstrating its effectiveness in predicting suitable habitats.

    The ConvLSTM model captures both spatial and temporal patterns with high accuracy, significantly outperforming several benchmarked ensemble learning models. Its superior performance highlights its robustness and effectiveness in predicting tuna presence.

    The study underscores the potential of HSI and ConvLSTM models for fisheries management and conservation within Tuvalu’s EEZ. Future research could further enhance these models by incorporating additional data sources, contributing to sustainable fisheries management and the preservation of marine ecosystems.

    Introduction .................................................... 1 1.1 Research Background .............................. 3 1.1.1 Tuvalu .............................................. 3 1.1.2 Tuna ................................................. 6 1.1.3 Habitat Suitability Index Model ..... 10 1.1.4 Convolutional Long Short-Term Memory (ConvLSTM) ......... 11 1.2 Research Motivation ............................... 12 1.3 Research Objectives ............................... 13 Related Work ................................................ 15 2.1 Tuna and Oceanographic .......................... 16 2.2 Vessel Monitoring System ..................... 19 2.3 Habitat Suitability Index (HSI) .............. 20 2.4 Convolutional Long Short-Term Memory .................... 22 2.5 Integration of ConvLSTM and HSI ........ 24 Methodology .............................................. 27 3.1 Data Collection .................................. 28 3.1.1 Fishing Effort Data ...................... 29 3.1.2 Sea Surface Temperature (SST) Data ............................ 29 3.1.3 Chlorophyll a Concentration ...... 30 3.2 Pre-processing ................................... 31 3.2.1 Fishing Efforts ............................. 31 3.2.2 Sea Surface Temperature ............ 32 3.2.3 Chlorophyll ................................. 33 3.2.4 Merging Sea Surface Temperature, Chlorophyll and Fishing Effort ...... 34 3.3 Habitat Suitability Index Model ........ 35 3.4 Validation of HSI Score .................... 38 3.4.1 Pearson Correlation .................. 39 3.4.2 Chi-Square Test ......................... 40 3.4.3 Spatio-Temporal Logistic Regression Analysis ..................... 40 3.4.4 HSI Performance Metrics .......... 41 3.4.5 HSI Data Visualization ............. 43 3.5 Convolutional Long Short Term Memory Model ..................... 44 3.5.1 Data Preparation for ConvLSTM ... 44 3.5.2 ConvLSTM Formula .................. 45 3.5.3 ConvLSTM Design .................... 48 3.5.4 Training Process ......................... 50 3.5.5 ConvLSTM Performance Metrics .................................. 50 3.6 Benchmark ........................................ 51 3.6.1 Random Forest ........................... 51 3.6.2 Gradient Boosting ....................... 51 3.6.3 AdaBoost .................................. 52 3.6.4 XGBoost ................................... 52 3.6.5 Support Vector Regression (SVR) .................. 52 Data Analysis .............................................. 53 4.1 Habitat Suitability Index Result ........ 53 4.2 Validation of HSI Score .................... 55 4.2.1 Pearson Correlation Analysis .... 55 4.2.2 Chi-square Test Result .............. 56 4.2.3 Spatiotemporal Logistic Regression Analysis .............................. 56 4.2.4 HSI Performance Metric ............. 57 4.2.5 HSI Data Visualization .............. 57 4.3 ConvLSTM ......................................... 59 4.3.1 Training Process .......................... 59 4.3.2 ConvLSTM Performance Metrics ............................. 63 4.3.3 ConvLSTM Data Visualization ................................... 63 4.4 Benchmark Result ............................... 65 4.4.1 Random Forest Performance ...... 66 4.4.2 Gradient Boosting Performance .. 66 4.4.3 AdaBoost Performance ............... 66 4.4.4 XGBoost Performance ................ 67 4.4.5 SVR with PCA Performance ...... 67 4.4.6 Benchmark Summary ................. 67 Discussion .................................................. 69 5.1 Habitat Suitability Index (HSI) ......... 69 5.2 ConvLSTM Model ........................... 71 Conclusion ................................................. 75 Future Work ............................................. 77 7.1 Working with a Finer Resolution ..... 77 7.2 Implementing the ConvLSTM Model in a Real-Time Monitoring System .......... 78 7.2.1 Data Integration and Real-Time Processing ............................ 78 7.2.2 Model Optimization for Real-Time Predictions ........................... 78 7.2.3 Deployment in Portable Systems .......................... 79 7.2.4 Management and Decision Support .......................... 79

    1. Aarestrup, K., Baktoft, H., Birnie-Gauvin, K., Sundelf, A., Cardinale, M., Quilez-Badia, G., ... & MacKenzie, B. R. (2022, July 11). First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning. Scientific Reports, 12, 11772. https://doi.org/10.1038/s41598-022-15819-x

    2. Amon, D. J., Palacios-Abrantes, J., Drazen, J. C., Lily, H., Nathan, N., van der Grient, J. M. A., & McCauley, D. (2023). Climate change to drive increasing overlap between Pacific tuna fisheries and emerging deep-sea mining industry. npj Ocean Sustainability, 2(9). http://dx.doi.org/10.1038/s44183-023-00016-8

    3. Chamorro, F., Cassani, L., Garcia-Oliveira, P., Barral-Martinez, M., Jorge, A. O. S., Pereira, A. G., ... & Prieto, M. A. (2024). Health benefits of bluefin tuna consumption: (Thunnus thynnus) as a case study. Frontiers in Nutrition, 11(2024). https://doi.org/10.3389/fnut.2024.1340121

    4. Charlton, K. E., Russell, J., Gorman, E., Hanich, Q., Delisle, A., Campbell, B., & Bell, J. (2016, March 24). Fish food security and health in Pacific Island countries and territories: A systematic literature review. BMC Public Health, 16, 285. https://doi.org/10.1186/s12889-016-2953-9

    5. Cort, J. L., & Abaunza, P. (2019, February 8). The Bluefin Tuna Fishery in the Bay of Biscay: Its Relationship with the Crisis of Catches of Large Specimens in the East Atlantic Fisheries from the 1960s. SpringerBriefs in Biology. Springer. Pp 7-18. https://doi.org/10.1007/978-3-030-11545-6

    6. Food and Agriculture Organization of the United Nations. (2010). Fishery and aquaculture country profile: Tuvalu (FID/CP/TUV). In National fishery sector overview. Retrieved from http://www.fao.org/fi/oldsite/FCP/en/TUV/profile.htm

    7. Forum Fisheries Agency (FFA). (n.d.) Tuna Stocks– Looking after the fish supply. Retrieved from https://tunapacific.ffa.int/tuna-stocks/

    8. Gillett, R. (2009). Fisheries in the economies of the Pacific island countries and territories. Mandaluyong City, Philippines: Asian Development Bank. ISBN: 978-971-561-708-6. (Publication Stock No. RPS090148).

    9. Gomez, G., Farquhar, S., Bell, H., Laschever, E., & Hal, S. (2020). The IUU Nature of FADs: Implications for Tuna Management and Markets. Coastal Management, 48(6), 534–558. https://doi.org/10.1080/08920753.2020.1845585

    10. Government of Tuvalu. (2015). Second National Communication of Tuvalu to the United Nations Framework Convention on Climate Change.

    11. Hannesson, R. (2008). The exclusive economic zone and economic development in the Pacific Island countries. Marine Policy, 32(3), 403-408. https://doi.org/10.1016/j.marpol.2008.01.004

    12. Hsu, T.-Y., Chang, Y., Lee, M.-A., Wu, R.-F., & Hsiao, S.-C. (2021). Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sensing, 13(5), 861. https://doi.org/10.3390/rs13050861

    13. International Institute for Law of the Sea Studies. (2022, May 23). Exclusive Economic Zone (EEZ) map of the world. Retrieved from https://iilss.net/exclusive-economic-zoneeez-map-of-the-world/

    14. International Seafood Sustainability Foundation (ISSF). (n.d). Tuna Species. Retrieved from https://www.iss-foundation.org/tuna-stocks-and-management/tuna-fishing/tuna-species/

    15. Kennedy, D. G. (1929). Field notes on the culture of Vaitupu, Ellice Islands. J. Polyn. Soc., 38, 1–99.

    16. Le-Alvarado, M., Romo-Curiel, A. E., Sosa-Nishizaki, O., Hernandez-Sanchez, O., Barbero, L., & Herzka, S. Z. (2021). Yellowfin tuna (Thunnus albacares) foraging habitat and trophic position in the Gulf of Mexico based on intrinsic isotope tracers. PLoS One, 16(2), e0246082. https://doi.org/10.1371/journal.pone.0246082

    17. Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., & Picaut, J. (1997). El Nino Southern Oscillation and tuna in the western Pacific. Oceanic Fisheries Programme, South Pacific Commission; Groupe SURTROPAC ORSTOM. Received 18 April; accepted 18 August 1997.

    18. Lehodey, P., Senina, I., & Murtugudde, R. (2008). A Spatial Ecosystem and Populations Dynamics Model (SEAPODYM)—Modeling of Tuna and Tuna-like Populations. Progress In Oceanography, 78, 304-318. https://doi.org/10.1016/j.pocean.2008.06.004

    19. McCubbin, S. G., Pearce, T., Ford, J. D., & Smit, B. (2017). Social–ecological change and implications for food security in Funafuti, Tuvalu. Ecology and Society, 22(1). Retrieved from https://www.jstor.org/stable/26270106

    20. Nordhoff, C. (1930). Note of the off-shore fishing of the Society Islands. J. Polyn. Soc., 39, 137–173.

    21. Nøttestad, L., Boge, E., & Ferter, K. (2020, July 21). The comeback of Atlantic bluefin tuna (Thunnus thynnus) to Norwegian waters. Fisheries Research, 231, 105689. https://doi.org/10.1016/j.fishres.2020.105689

    22. Panapa, T. (2014). OLA LEI: Developing Healthy Communities in Tuvalu. A thesis submitted in fulfillment of the requirements for the degree of a PhD in Development Studies, The University of Auckland.

    23. Rohit, P. (2013). Fish Aggregating Devices (FADs). Principal Scientist, Pelagic Fisheries Division, CMFRI Research Centre, Mangalore. P.B. 244, Mangalore, Karnataka-575 001.

    24. Sea Shepherd Global. (2023). Sea Shepherd commits to sending ship to Tuvalu to support police patrols against illegal fishing. https://www.seashepherdglobal.org/latest-news/tuvalu-iuu-support/

    25. Senina, I., Lehodey, P., Smith, N., Hampton, J., Reid, C., Bell, J., and partners. (2018). Impact of climate change on tropical tuna species and tuna fisheries in Pacific Island waters and high seas areas: Final Report (CI-3) for SAN 6003922. Developed for Conservation International (CI) as part of the GEF-funded World Bank-implemented Ocean Partnerships for sustainable fisheries and biodiversity conservation (OPP), a sub-project of the Common Oceans ABNJ Program led by UN-FAO.

    26. Senina, I. N., Lehodey, P., Hampton, J., & Sibert, J. (2020). Quantitative modeling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations. Deep Sea Research Part II: Topical Studies in Oceanography, 175, 104667. https://doi.org/10.1016/j.dsr2.2019.104667

    27. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., & Woo, W.-c. (2015, September 19). Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Department of Computer Science and Engineering, Hong Kong University of Science and Technology; Hong Kong Observatory.

    28. Singh, A. (2009, June). Sea Level Threat in Tuvalu. American Journal of Applied Science. https://doi.org/10.3844/ajassp.2009.1169.1174

    29. Thaman, R. (2015). Te ika o Tuvalu mo Tokelau: Fishes of Tuvalu and Tokelau. Noumea, New Caledonia.

    30. The

    Pacific Community (SPC). (n.d.). Tuvalu. Retrieved from https://www.spc.int/sites/default/files/wordpresscontent/wp-content/uploads/2017/01/21-tuvalu.pdf

    31. Tui, S., & Fakhruddin, B. (2022, October 3). Food for thought. Climate change risk food (in)security in Tuvalu. Progress in Disaster Science, 1.

    32. Tuvalu Central Statistic Division. (2021). Agriculture and Fisheries Report: Based on the Analysis of the 2017 Population and Housing Census. Funafuti. Part 6.

    33. Tuvalu Fisheries Department. (2022, July). Tuvalu Fisheries Annual Report. Retrieved from https://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf

    34. United Nations. (1982). United Nations Convention on the Law of the Sea (UNCLOS). Article 55-58. Retrieved from https://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf

    35. Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018, June 8). Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Banasthali Vidyapeeth, Rajasthan, India; DRDO, Delhi, India.

    36. Hochreiter, S., & Schmidhuber, J. (1997, November 15). “Long Short-Term Memory” in Neural Computation, vol. 9, no. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

    37. Gers, F.A., Eck, D., & Schmidhuber, J. (2002). Applying LSTM to Time Series Predictable Through Time-Window Approaches. In: Tagliaferri, R., Marinaro, M. (eds) Neural Nets WIRN Vietri-01. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0219-9_20

    38. Alfatinah, A., Chu, H-J., Tatas, & Patra, S.R. (2023). Fishing Area Prediction Using Scene-Based Ensemble Models. Journal of Marine Science and Engineering, 11(7), 1398. https://doi.org/10.3390/jmse11071398

    39. Elsayed, M. (2023). Human Action Analysis Using Spatial-Temporal ConvLSTM. Retrieved from https://www.researchgate.net/publication/372959532

    40. Halla, S., Newman, S. T., Loukaides, E., & Shokrani, A. (2022). ConvLSTM deep learning signal prediction for forecasting bending moment for tool condition monitoring. Procedia CIRP, 107, 1071–1076. https://doi.org/10.1016/j.procir.2022.05.110

    41. Han, C., Park, H., Kim, Y., Kim, Y., & Gim, G. (2023). Big Data, Cloud Computing, and Data Science Engineering. In R. Lee (Ed.) Studies in Computational Intelligence, 1075. Graduate School of IT Policy and Management, Soongsil University, Seoul, South Korea. Retrieved from https://doi.org/10.1007/978-3-031-19608-9_4

    42. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, Anaheim, CA. American Meteorological Society.

    43. Mohammed, A., & Corzo, G. (2023). Spatiotemporal convolutional long short-term memory for regional streamflow predictions. Journal of Environmental Management. Advance online publication. https://doi.org/10.1016/j.jenvman.2023.119585

    44. Vaihola, S., & Kininmonth, S. (2023). Environmental factors determine tuna fishing vessels’ behavior in Tonga. Fishes, 8(12), 602. https://doi.org/10.3390/fishes8120602

    45. Semedi, B., Hardoko, H., Dewi, C. S. U., Syam’s, N. D. S., Diza, N. F., & Bayuaji, G. D. A. P. (2023). Seasonal migration zone of skipjack tuna (Katsuwonus pelamis) in the South Java Sea using multisensor satellite remote sensing. Department of Utilization of Fisheries and Marine Resources, Brawijaya University, Malang, 65145, Indonesia. Department of Fisheries and Marine Resources Management, Brawijaya University, Malang, 65145, Indonesia. https://doi.org/10.1155/2023/1073633

    46. Zhao, Z., Hong, F., Huang, H., Liu, C., Feng, Y., & Guo, Z. (2021). Short-term prediction of fishing effort distributions by discovering fishing chronology among trawlers based on VMS dataset. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2021.115512

    47. Zhang, J., Fan, D., He, H., Xiao, B., Xiong, Y., & Shi, J. (2023). Forecasting albacore (Thunnus alalunga) fishing grounds in the South Pacific based on machine learning algorithms and ensemble learning model. Remote Sensing, 15(8), 2146. https://www.mdpi.com/2270380

    48. Yugopuspito, P., Lukas, S., Murwantara, I. M., Albert, S., & Hery, H. (2019). A novel fishing finder technique based on VMS data in Indonesia. In Proceedings of the 2019 8th International Conference on Software and Computer Applications (pp. 215-220). ACM.

    49. Yen, K.-W., Lu, H.-J., Chang, Y., & Lee, M.-A. (2012). Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. International Journal of Remote Sensing, 33(23), 7507-7522. https://doi.org/10.1080/01431161.2012.685973

    50. Lee, M. A., Weng, J. S., Lan, K. W., Vayghan, A. H., Wang, Y. C., & Chan, J. W. (2020). Empirical habitat suitability model for immature albacore tuna in the North Pacific Ocean obtained using multisatellite remote sensing data. International Journal of Remote Sensing, 41(15), 5819–5837. https://doi.org/10.1080/01431161.2019.1666317

    51. Liu, D., Wu, J., Zhang, Z., & Sun, G. (2019). Drought forecasting based on SPI and EDI: A case study in the Heihe River Basin, China. Water, 11(5), 982. https://doi.org/10.3390/w11050982

    52. Yuan, X., Wang, L., Zhang, M., & Yao, W. (2020). A new ConvLSTM model for multi-site precipitation downscaling. Journal of Hydrology, 586, 124885. https://doi.org/10.1016/j.jhydrol.2020.124885

    53. Fisheries Department, Ministry of Fisheries and Trade, Government of Tuvalu. (2020). Corporate plan 2020/2022. Government of Tuvalu.

    54. Global Fishing Watch. (2021). Fishing Effort [Data set]. Retrieved from https://globalfishingwatch.org/data-download/datasets/public-fishing-effort

    55. Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., ... & Worm, B. (2018). Supplementary Materials for Tracking the global footprint of fisheries. Science, 359(6381), 904. https://doi.org/10.1126/science.aao5646

    56. Lehodey, P., Bertignac, M., Hampton, J., et al. El Nino Southern Oscillation and tuna in the western Pacific. Nature, 389, 715–718 (1997). https://doi.org/10.1038/39575

    57. National Oceanic and Atmospheric Administration (NOAA). (n.d.). NOAA Optimum Interpolation Sea Surface Temperature (OISST) Version 2 High-Resolution [Data set]. Retrieved from https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html Accessed on 2023.

    58. Moore, D. S., Notz, W. I., & Fligner, M. A. (2013). The Basic Practice of Statistics (6th ed.). New York: W. H. Freeman and Company.

    59. JPL MUR MEaSUREs Project & Ge Peng. (2017). GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2). NOAA NCEI Environmental Data Archive. 6C743BD7-D3F3-42EC-B73F

    -2E0A31CF7F13.

    60. McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference (pp. 51-56).

    61. Liu, J., Yang, J., Liu, K., & Xu, L. (2022). Improving the performance of sea surface temperature predictions using a revised method. Remote Sensing Letters, 13(2), 173–183. https://doi.org/10.1080/2150704X.2021.2005269

    62. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2

    63. SciPy Developers. (n.d.). Interpolation (scipy.interpolate). SciPy Reference Guide. Retrieved Nov 20, 2023 from https://docs.scipy.org/doc/scipy/reference/interpolate.html

    64. Hong, Zhongkun, Long, Di, Li, Xingdong, Wang, Yiming, Zhang, Jianmin, Mohamed, A.Hamouda, & Mohamed, M.Mohamed. (2023). OCNET global daily Chlorophyll-a products (3.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10011908

    65. Qiang, L., Hao, H., Yongmin, W., Xu, G., Liqian, & Hao, H. (2012). The KD-Tree-based nearest-neighbor search algorithm in GRID interpolation. International Conference on Image Analysis and Signal Processing, Huangzhou, China, 2012, pp. 1-6. https://doi.org/10.1109/IASP.2012.6425061

    66. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... & SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.

    67. Nikezi, D.P., Ramadani, U.R., Radivojevi, D.S., Lazovi, I.M., & Mirkov, N.S. (2022). Deep Learning Model for Global Spatio-Temporal Image Prediction. Mathematics, 10, 3392. https://doi.org/10.3390/math10183392

    68. Food and Agriculture Organization (FAO) of the United Nations (UN). (2017). Fishery and Aquaculture Country Profiles: Tuvalu. Retrieved from https://www.fao.org/figis/pdf/fishery/facp/TUV/en?title=FAO

    69. Food and Agriculture Organization of the United Nations. (2023). Fishing Techniques: Tuna Purse Seining. Retrieved from https://www.tunana-fishing.com/tuna-fishing-techniques/

    70. Zainuddin, M. (2011). Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data. Jurnal Ilmu dan Teknologi Kelautan Tropis, 3(1), 82-90.

    71. Agresti, A. (2018). An Introduction to Categorical Data Analysis. Wiley, pp. 36-48.

    72. Zainuddin, M. (2011). Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data. Jurnal Ilmu dan Teknologi Kelautan Tropis, 3(1), 82-90.

    73. Mondal, S., Haghi Vayghan, A., Lee, M.-A., Wang, Y.-C., & Semedi, B. (2021). Habitat suitability modeling for the feeding ground of immature albacore in the Southern Indian Ocean using satellite-derived sea surface temperature and chlorophyll data. Remote Sensing, 13(14), 2669. https://doi.org/10.3390/rs13142669

    74. Lauver, C.L., Busby, W.H., & Whistler, J.L. (2002). Testing a GIS Model of Habitat Suitability for a Declining Grassland Bird. Environmental Management, 30, 88–97.

    75. Western and Central Pacific Fisheries Commission. (2024). Public Domain Aggregated Catch/Effort Data. Retrieved from https://www.wcpfc.int/wcpfc-public-domain-aggregated-catcheffort-data-download-page

    76. Hicks, S. A., Strmke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12, 5979. https://doi.org/10.1038/s41598-022-08882-7

    77. Khan, A. A., Chaudhari, O., & Chandra, R. (2023). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation, and evaluation. Expert Systems with Applications, 122778. https://doi.org/10.1016/j.eswa.2023.122778

    78. Rahman, S., Irfan, M., Raza, M., Ghori, K. M., Yaqoob, S., & Awais, M. (2020). Performance analysis of boosting classifiers in recognizing activities of daily living. International Journal of Environmental Research and Public Health, 17(3), 1082. https://doi.org/10.3390/ijerph17031082

    79. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

    80. Waskom, M., Botvinnik, O., Gelbart, M., Ostblom, J., Lukauskas, S., Hobson, P., ... & Brunner, T. (2020). mwaskom/seaborn: v0.10.1 (April 2020). Zenodo. https://doi.org/10.5281/zenodo.3767070

    81. Moishin, M., Deo, R. C., Prasad, R., Raj, N., & Abdulla, S. (2021). Designing Deep-Based Learning Flood Forecast Model With ConvLSTM Hybrid Algorithm. IEEE Access, 9, 42257-42269. https://doi.org/10.1109/ACCESS.2021.3065939

    QR CODE