研究生: |
周欣穎 |
---|---|
論文名稱: |
一群落之Shannon熵指標與Hill指標族之估計方法 Estimation of Shannon's Entropy and Hill's Family of Indices in One Community |
指導教授: | 趙蓮菊 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 生物多樣性 、Shannon指標 、Hill指標族 、摺刀法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物多樣性 (Biodiversity) 指的是地球上所有動植物、微生物,及其所有的基因、環境所構成的生態系,現今世界人口已突破65億大關,人口的激增造成糧食需求大增,人類對地表不斷的開發以及過度利用資源,使得生態系遭受破壞,影響生物生存空間,而生態系惡化也使生物多樣性銳減,進而造成物種的滅絕而導致基因消失;據估計,目前世界上每天滅絕的物種超過100種;有鑑於此,世界各國已漸漸意識到生物多樣性之重要性,在地區性的開發或是生態保育政策評估之時,都需要適當的評估其生物多樣性。
本文探討單一地區物種的多樣性,可藉由一些量化的指標來表示其物種的豐富程度,生態學家較常使用的指標有Shannon熵指標、Simpson指標以及物種數。其中Shannon熵指標是生態學家較常用的指標,而Hill (1973) 提出的Hill指標族,則可以藉由對優勢種或稀有種的加權程度做調整,來決定多樣性的指標;本文以探討Shannon熵指標及Hill指標族的各種估計量表現為主。
估計的方法,包含最大概似估計量、泰勒展式修正最大概似估計量、Horvitz-Thompson估計量及一階摺刀法;在此,進而使用二階摺刀法、三階摺刀法,比較各估計量之優缺點;一個估計量之優劣,除了考量其偏誤是否夠小,也應一併考量其變異數是否穩定;所以在此同時考量這兩部分,以樣本均方根誤差來評估估計量之優劣,並進而模擬各種常見的生態機率模型,配合不同的抽樣數,比較各估計量之表現,最後輔以實例說明。
Basharin, G. P. (1959), “On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables,”Theory of Probability and Its Applications 4, 333-336.
Blyth, C. R. (1959),“Note on Estimating Information,”Annals of Mathematical Statistics 30, 71-79.
Chao, A. and Lee, S.-M.(1992),“Estimating the Number of Classes via Sample Coverage,”Journal of the American Statistical Association 87, 210-217.
Chao, A., Ma, M.-C. and Yang, M. C. K. (1993),“Stopping Rules and Estimation for Recapture Debugging with Unequal Failure Rates,”Biometrika 80, 193-201.
Chao, A. and Shen, T.-J. (2003),“Nonparametric Estimation of Shannon's Index of Diversity when There are Unseen Species in Sample,”Environmental and Ecological Statistics 10, 429-443.
Efron, B. (1973),“Bootstrap Methods: Another Look at the Jackknife,”The Annals of Statistics 7, 1-26.
Good, I. J. (1953),“The Population Frequencies of Species and the Estimation of Population Parameters,” Biometrika 40, 237-264.
Hill, M. O. (1973), “Diversity and Evenness : a Unifying Notation and Its Consequence,” Ecology 54, 427-432.
Horvitz, D.G. and Thompson, D.J. (1952),“A Generalization of Sampling Without Replacement from a Finite Universe”Journal of the American Statistical Association, 47, 663-685.
Janzen, D. H. (1973), “Sweep Samples of Tropical Foliage Insects: Description of Study Sites, with Data on Species Abundances and Size Distributions,”Ecology 54, 659-686.
Jost, L. (2006),“Entropy and Diversity,”Oikos 113, 363-375.
Jost, L. (2007),“Partitioning Diversity into Independent Alpha and Beta Components,”Ecology 80, 2427-2439.
Miller, G.A. and Madow, W.G. (1954),“On the Maximum Likelihood Estimate of the Shannon-Wiener Measure of Information,”Air Force Cambridge Research Center: Technical Report 1954, 54-75.
Quenouille, M. H. ( 1949),“Problems in Plane Sampling,” Annals of Mathematical Statistics 20, 355-375.
Quenouille, M. H. ( 1956),“Notes on Bias in Estimation, ”Biometrika 43, 353-360.
R□nyi, A. (1961),“On Measures of Entropy and Information,”Proc. Fourth Berkeley Symp. Math. Stat. and Probability 1, 547-561.
Schucany, W. R., Gray, H. L. and Owen, D. B. (1971),“On Bias Reduction in Estimation,”Journal of the American Statistical Association 66, 524-533.
Shannon, C. E. (1948),“A Mathematical Theory of Communication ,”Bell System Technical Journal 27, 379-423.
Simpson, E. H. (1949),“Measurement of Diversity,”Nature 163, 688.
Shao, J. and Wu, C. F. J.(1989), “A General Theory for Jackknife Variance Estimation,”The Annals of Statistics, 17, 1176-1197.
Zahl, S. (1977),“Jackknifing an Index of Diversity,”Ecology 58, 907-913.
沈宗荏 (2003), “生物多樣性之預測”, 清華大學統計所博士論文