研究生: |
吳承翰 Wu, Cheng-Han |
---|---|
論文名稱: |
同時監控韋伯分佈雙參數的調適變動指數加權移動平均管制圖 Adaptive EWMA Variable Sampling Interval Control Charts for Monitoring Weibull Shape and Scale Parameters Simultaneously |
指導教授: |
黃榮臣
Huwang, Long-cheen |
口試委員: |
黃郁芬
Huang, Yu-fen 王藝華 Wang, Yi-Hua |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | EWMA管制圖 、韋伯分佈 、雙參數 、變動抽樣區間 、AEWMA管制圖 |
外文關鍵詞: | EWMA control charts, Weibull distribution, two parameters, variable sampling interval, AEWMA control charts |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在監控產品壽命的資料時,我們常以韋伯分佈來描述其失效時間。在現有
文獻中大多在探討如何個別監控韋伯分佈的形狀參數和尺度參數。在本文中我
們會利用兩個現有的舒華特管制圖的監控統計量,建構出能同時監控韋伯分佈
雙參數的 EWMA 管制圖及 AEWMA 管制圖,並且將變動抽樣區間的概念應用
到這兩個管制圖上,同時我們使用統計模擬的方式來評估管制圖效率的表現。
最後我們舉了一個碳纖維拉扯強度的資料來說明在實際上如何運用與執行我們
所提出的管制圖。
When monitoring the lifetime data of the products, we often use Weibull distribution to represent the failure time. There are a lot of literatures studying
how to monitor the shape parameter and the scale parameter, individually. In
this article, we use two existing charting statistics of Shewhart-type control charts
to develop the EWMA and AEWMA control charts for monitoring the shape
and scale parameters simultaneously. In addition, we propose the EWMA and
AEWMA control charts using the concept of varible sampling intervals. We use
simulation to evaluate the performance of our purposed control charts. Finally,
we use a breaking strength example from a carbon fiber process to demonstrate
the applicability of the proposed control schemes.
[1] Guo, B. and Wang, B. X. (2014).“Control charts for monitoring the Weibull
shape parameter based on type-ii censored sample.”Quality and Reliability
Engineering International, 30(1), pp. 13-24.
[2] Guo, B., Wang, B. X. and Xie, M. (2014).“ARL-unbiased control charts for
the monitoring of exponentially distributed characteristics based on type-II
censored samples.”Journal of Statistical Computation and Simulation, 84(12),
pp. 2734–2747.
[3] Haq A, Gulzar R, Khoo, M. B. C. (2018). “An efficient adaptive EWMA control chart for monitoring the process mean.”Quality and Reliability Engineering
International, 34(4), pp. 563-571.
[4] Haq A. (2018). “A new adaptive EWMA control chart for monitoring the
process dispersion.”Quality and Reliability Engineering International, 34(5),
pp. 846-857.
[5] Padgett, W. and Spurrier, J. D. (1990).“Shewhart-type charts for percentiles
of strength distributions.”Journal of Quality Technology, 22(4), pp. 283-288.
[6] Page, E. S. (1954).“Continuous inspection schemes.”Biometrics, 41(1/2), pp.
100-115.
[7] Pascual, F. (2010).“EWMA charts for the Weibull shape parameter.”Journal
of Quality Technology, 42(4), pp. 400–416.
[8] Pascual, F. and Li, S. (2012).“Monitoring the Weibull shape parameter by
control charts for the sample range of type II censored data.”Quality and
Reliability Engineering International, 28(2), pp. 233-246.
[9] Reynolds, M. R., Amin, R. W. and Arnold, J. C. (1990).“CUSUM charts with
variable sampling intervals.”Technometrics, 32(4), pp. 371-384.
[10] Roberts, S. W. (1959). “Control chart test based on geometric moving averages.”Technometrics, 1(3), pp. 234-250.
[11] Saccucci, M. S. and Lucas, J. M. (1990).“Exponentially weighted moving
average control schemes: properties and enhancements.”Technometrics, 32(1),
pp. 1-12.
[12] Shewart, W. A. (1924).“Some application of statistical methods to the analysis
of physical and engineering data.”Bell System Technical Journal, 3(1), pp. 43-
87
[13] Zhang, C. W., Ye, Z. and Xie, M. (2017).“Monitoring the shape parameter of
a Weibull renewal process.”IISE Transactions, 49(8), pp. 800-813.